Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlmcl.z |
|
2 |
|
rnglidlmcl.b |
|
3 |
|
rnglidlmcl.t |
|
4 |
|
rnglidlmcl.u |
|
5 |
|
eqid |
|
6 |
4 2 5 3
|
islidl |
|
7 |
|
oveq1 |
|
8 |
7
|
oveq1d |
|
9 |
8
|
eleq1d |
|
10 |
9
|
ralbidv |
|
11 |
|
oveq2 |
|
12 |
11
|
oveq1d |
|
13 |
12
|
eleq1d |
|
14 |
13
|
ralbidv |
|
15 |
10 14
|
rspc2v |
|
16 |
15
|
adantl |
|
17 |
|
oveq2 |
|
18 |
17
|
eleq1d |
|
19 |
18
|
rspcv |
|
20 |
19
|
adantl |
|
21 |
|
rnggrp |
|
22 |
21
|
3ad2ant1 |
|
23 |
22
|
adantr |
|
24 |
23
|
adantr |
|
25 |
|
simpll1 |
|
26 |
|
simprl |
|
27 |
|
ssel |
|
28 |
27
|
3ad2ant2 |
|
29 |
28
|
adantr |
|
30 |
29
|
adantld |
|
31 |
30
|
imp |
|
32 |
2 3
|
rngcl |
|
33 |
25 26 31 32
|
syl3anc |
|
34 |
2 5 1 24 33
|
grpridd |
|
35 |
34
|
eleq1d |
|
36 |
35
|
biimpd |
|
37 |
36
|
ex |
|
38 |
20 37
|
syl5d |
|
39 |
38
|
imp |
|
40 |
16 39
|
syld |
|
41 |
40
|
ex |
|
42 |
41
|
com23 |
|
43 |
42
|
ex |
|
44 |
43
|
com23 |
|
45 |
44
|
3exp |
|
46 |
45
|
3impd |
|
47 |
6 46
|
biimtrid |
|
48 |
47
|
3imp1 |
|