Metamath Proof Explorer


Theorem rnglidlmmgm

Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rnglidlabl.l L = LIdeal R
rnglidlabl.i I = R 𝑠 U
rnglidlabl.z 0 ˙ = 0 R
Assertion rnglidlmmgm R Rng U L 0 ˙ U mulGrp I Mgm

Proof

Step Hyp Ref Expression
1 rnglidlabl.l L = LIdeal R
2 rnglidlabl.i I = R 𝑠 U
3 rnglidlabl.z 0 ˙ = 0 R
4 simp1 R Rng U L 0 ˙ U R Rng
5 1 2 lidlbas U L Base I = U
6 eleq1a U L Base I = U Base I L
7 5 6 mpd U L Base I L
8 7 3ad2ant2 R Rng U L 0 ˙ U Base I L
9 5 eqcomd U L U = Base I
10 9 eleq2d U L 0 ˙ U 0 ˙ Base I
11 10 biimpa U L 0 ˙ U 0 ˙ Base I
12 11 3adant1 R Rng U L 0 ˙ U 0 ˙ Base I
13 4 8 12 3jca R Rng U L 0 ˙ U R Rng Base I L 0 ˙ Base I
14 1 2 lidlssbas U L Base I Base R
15 14 sseld U L a Base I a Base R
16 15 3ad2ant2 R Rng U L 0 ˙ U a Base I a Base R
17 16 anim1d R Rng U L 0 ˙ U a Base I b Base I a Base R b Base I
18 17 imp R Rng U L 0 ˙ U a Base I b Base I a Base R b Base I
19 eqid Base R = Base R
20 eqid R = R
21 3 19 20 1 rnglidlmcl R Rng Base I L 0 ˙ Base I a Base R b Base I a R b Base I
22 13 18 21 syl2an2r R Rng U L 0 ˙ U a Base I b Base I a R b Base I
23 2 20 ressmulr U L R = I
24 23 eqcomd U L I = R
25 24 oveqd U L a I b = a R b
26 25 eleq1d U L a I b Base I a R b Base I
27 26 3ad2ant2 R Rng U L 0 ˙ U a I b Base I a R b Base I
28 27 adantr R Rng U L 0 ˙ U a Base I b Base I a I b Base I a R b Base I
29 22 28 mpbird R Rng U L 0 ˙ U a Base I b Base I a I b Base I
30 29 ralrimivva R Rng U L 0 ˙ U a Base I b Base I a I b Base I
31 fvex mulGrp I V
32 eqid mulGrp I = mulGrp I
33 eqid Base I = Base I
34 32 33 mgpbas Base I = Base mulGrp I
35 eqid I = I
36 32 35 mgpplusg I = + mulGrp I
37 34 36 ismgm mulGrp I V mulGrp I Mgm a Base I b Base I a I b Base I
38 31 37 mp1i R Rng U L 0 ˙ U mulGrp I Mgm a Base I b Base I a I b Base I
39 30 38 mpbird R Rng U L 0 ˙ U mulGrp I Mgm