Metamath Proof Explorer


Theorem rnglidlmsgrp

Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rnglidlabl.l L = LIdeal R
rnglidlabl.i I = R 𝑠 U
rnglidlabl.z 0 ˙ = 0 R
Assertion rnglidlmsgrp R Rng U L 0 ˙ U mulGrp I Smgrp

Proof

Step Hyp Ref Expression
1 rnglidlabl.l L = LIdeal R
2 rnglidlabl.i I = R 𝑠 U
3 rnglidlabl.z 0 ˙ = 0 R
4 1 2 3 rnglidlmmgm R Rng U L 0 ˙ U mulGrp I Mgm
5 eqid mulGrp R = mulGrp R
6 5 rngmgp R Rng mulGrp R Smgrp
7 6 3ad2ant1 R Rng U L 0 ˙ U mulGrp R Smgrp
8 1 2 lidlssbas U L Base I Base R
9 8 sseld U L a Base I a Base R
10 8 sseld U L b Base I b Base R
11 8 sseld U L c Base I c Base R
12 9 10 11 3anim123d U L a Base I b Base I c Base I a Base R b Base R c Base R
13 12 3ad2ant2 R Rng U L 0 ˙ U a Base I b Base I c Base I a Base R b Base R c Base R
14 13 imp R Rng U L 0 ˙ U a Base I b Base I c Base I a Base R b Base R c Base R
15 eqid Base R = Base R
16 5 15 mgpbas Base R = Base mulGrp R
17 eqid R = R
18 5 17 mgpplusg R = + mulGrp R
19 16 18 sgrpass mulGrp R Smgrp a Base R b Base R c Base R a R b R c = a R b R c
20 7 14 19 syl2an2r R Rng U L 0 ˙ U a Base I b Base I c Base I a R b R c = a R b R c
21 2 17 ressmulr U L R = I
22 21 eqcomd U L I = R
23 22 oveqd U L a I b = a R b
24 eqidd U L c = c
25 22 23 24 oveq123d U L a I b I c = a R b R c
26 eqidd U L a = a
27 22 oveqd U L b I c = b R c
28 22 26 27 oveq123d U L a I b I c = a R b R c
29 25 28 eqeq12d U L a I b I c = a I b I c a R b R c = a R b R c
30 29 3ad2ant2 R Rng U L 0 ˙ U a I b I c = a I b I c a R b R c = a R b R c
31 30 adantr R Rng U L 0 ˙ U a Base I b Base I c Base I a I b I c = a I b I c a R b R c = a R b R c
32 20 31 mpbird R Rng U L 0 ˙ U a Base I b Base I c Base I a I b I c = a I b I c
33 32 ralrimivvva R Rng U L 0 ˙ U a Base I b Base I c Base I a I b I c = a I b I c
34 eqid mulGrp I = mulGrp I
35 eqid Base I = Base I
36 34 35 mgpbas Base I = Base mulGrp I
37 eqid I = I
38 34 37 mgpplusg I = + mulGrp I
39 36 38 issgrp mulGrp I Smgrp mulGrp I Mgm a Base I b Base I c Base I a I b I c = a I b I c
40 4 33 39 sylanbrc R Rng U L 0 ˙ U mulGrp I Smgrp