Metamath Proof Explorer


Theorem rnglidlrng

Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption U e. ( SubGrpR ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rnglidlabl.l L = LIdeal R
rnglidlabl.i I = R 𝑠 U
Assertion rnglidlrng R Rng U L U SubGrp R I Rng

Proof

Step Hyp Ref Expression
1 rnglidlabl.l L = LIdeal R
2 rnglidlabl.i I = R 𝑠 U
3 rngabl R Rng R Abel
4 3 3ad2ant1 R Rng U L U SubGrp R R Abel
5 simp3 R Rng U L U SubGrp R U SubGrp R
6 2 subgabl R Abel U SubGrp R I Abel
7 4 5 6 syl2anc R Rng U L U SubGrp R I Abel
8 eqid 0 R = 0 R
9 8 subg0cl U SubGrp R 0 R U
10 1 2 8 rnglidlmsgrp Could not format ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-
11 9 10 syl3an3 Could not format ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-
12 simpl1 R Rng U L U SubGrp R a Base I b Base I c Base I R Rng
13 1 2 lidlssbas U L Base I Base R
14 13 sseld U L a Base I a Base R
15 13 sseld U L b Base I b Base R
16 13 sseld U L c Base I c Base R
17 14 15 16 3anim123d U L a Base I b Base I c Base I a Base R b Base R c Base R
18 17 3ad2ant2 R Rng U L U SubGrp R a Base I b Base I c Base I a Base R b Base R c Base R
19 18 imp R Rng U L U SubGrp R a Base I b Base I c Base I a Base R b Base R c Base R
20 eqid Base R = Base R
21 eqid + R = + R
22 eqid R = R
23 20 21 22 rngdi R Rng a Base R b Base R c Base R a R b + R c = a R b + R a R c
24 12 19 23 syl2anc R Rng U L U SubGrp R a Base I b Base I c Base I a R b + R c = a R b + R a R c
25 20 21 22 rngdir R Rng a Base R b Base R c Base R a + R b R c = a R c + R b R c
26 12 19 25 syl2anc R Rng U L U SubGrp R a Base I b Base I c Base I a + R b R c = a R c + R b R c
27 2 22 ressmulr U L R = I
28 27 eqcomd U L I = R
29 eqidd U L a = a
30 2 21 ressplusg U L + R = + I
31 30 eqcomd U L + I = + R
32 31 oveqd U L b + I c = b + R c
33 28 29 32 oveq123d U L a I b + I c = a R b + R c
34 28 oveqd U L a I b = a R b
35 28 oveqd U L a I c = a R c
36 31 34 35 oveq123d U L a I b + I a I c = a R b + R a R c
37 33 36 eqeq12d U L a I b + I c = a I b + I a I c a R b + R c = a R b + R a R c
38 31 oveqd U L a + I b = a + R b
39 eqidd U L c = c
40 28 38 39 oveq123d U L a + I b I c = a + R b R c
41 28 oveqd U L b I c = b R c
42 31 35 41 oveq123d U L a I c + I b I c = a R c + R b R c
43 40 42 eqeq12d U L a + I b I c = a I c + I b I c a + R b R c = a R c + R b R c
44 37 43 anbi12d U L a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
45 44 3ad2ant2 R Rng U L U SubGrp R a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
46 45 adantr R Rng U L U SubGrp R a Base I b Base I c Base I a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c a R b + R c = a R b + R a R c a + R b R c = a R c + R b R c
47 24 26 46 mpbir2and R Rng U L U SubGrp R a Base I b Base I c Base I a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c
48 47 ralrimivvva R Rng U L U SubGrp R a Base I b Base I c Base I a I b + I c = a I b + I a I c a + I b I c = a I c + I b I c
49 eqid Base I = Base I
50 eqid mulGrp I = mulGrp I
51 eqid + I = + I
52 eqid I = I
53 49 50 51 52 isrng Could not format ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) : No typesetting found for |- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) with typecode |-
54 7 11 48 53 syl3anbrc R Rng U L U SubGrp R I Rng