Step |
Hyp |
Ref |
Expression |
1 |
|
rnglidlabl.l |
|
2 |
|
rnglidlabl.i |
|
3 |
|
rngabl |
|
4 |
3
|
3ad2ant1 |
|
5 |
|
simp3 |
|
6 |
2
|
subgabl |
|
7 |
4 5 6
|
syl2anc |
|
8 |
|
eqid |
|
9 |
8
|
subg0cl |
|
10 |
1 2 8
|
rnglidlmsgrp |
Could not format ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ ( 0g ` R ) e. U ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |- |
11 |
9 10
|
syl3an3 |
Could not format ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ U e. ( SubGrp ` R ) ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |- |
12 |
|
simpl1 |
|
13 |
1 2
|
lidlssbas |
|
14 |
13
|
sseld |
|
15 |
13
|
sseld |
|
16 |
13
|
sseld |
|
17 |
14 15 16
|
3anim123d |
|
18 |
17
|
3ad2ant2 |
|
19 |
18
|
imp |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
20 21 22
|
rngdi |
|
24 |
12 19 23
|
syl2anc |
|
25 |
20 21 22
|
rngdir |
|
26 |
12 19 25
|
syl2anc |
|
27 |
2 22
|
ressmulr |
|
28 |
27
|
eqcomd |
|
29 |
|
eqidd |
|
30 |
2 21
|
ressplusg |
|
31 |
30
|
eqcomd |
|
32 |
31
|
oveqd |
|
33 |
28 29 32
|
oveq123d |
|
34 |
28
|
oveqd |
|
35 |
28
|
oveqd |
|
36 |
31 34 35
|
oveq123d |
|
37 |
33 36
|
eqeq12d |
|
38 |
31
|
oveqd |
|
39 |
|
eqidd |
|
40 |
28 38 39
|
oveq123d |
|
41 |
28
|
oveqd |
|
42 |
31 35 41
|
oveq123d |
|
43 |
40 42
|
eqeq12d |
|
44 |
37 43
|
anbi12d |
|
45 |
44
|
3ad2ant2 |
|
46 |
45
|
adantr |
|
47 |
24 26 46
|
mpbir2and |
|
48 |
47
|
ralrimivvva |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
49 50 51 52
|
isrng |
Could not format ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) : No typesetting found for |- ( I e. Rng <-> ( I e. Abel /\ ( mulGrp ` I ) e. Smgrp /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) ( b ( +g ` I ) c ) ) = ( ( a ( .r ` I ) b ) ( +g ` I ) ( a ( .r ` I ) c ) ) /\ ( ( a ( +g ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` I ) c ) ( +g ` I ) ( b ( .r ` I ) c ) ) ) ) ) with typecode |- |
54 |
7 11 48 53
|
syl3anbrc |
|