Metamath Proof Explorer


Theorem rngmgmbs4

Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion rngmgmbs4 G : X × X X u X x X u G x = x x G u = x ran G = X

Proof

Step Hyp Ref Expression
1 r19.12 u X x X u G x = x x G u = x x X u X u G x = x x G u = x
2 simpl u G x = x x G u = x u G x = x
3 2 eqcomd u G x = x x G u = x x = u G x
4 oveq2 y = x u G y = u G x
5 4 rspceeqv x X x = u G x y X x = u G y
6 5 ex x X x = u G x y X x = u G y
7 3 6 syl5 x X u G x = x x G u = x y X x = u G y
8 7 reximdv x X u X u G x = x x G u = x u X y X x = u G y
9 8 ralimia x X u X u G x = x x G u = x x X u X y X x = u G y
10 1 9 syl u X x X u G x = x x G u = x x X u X y X x = u G y
11 10 anim2i G : X × X X u X x X u G x = x x G u = x G : X × X X x X u X y X x = u G y
12 foov G : X × X onto X G : X × X X x X u X y X x = u G y
13 11 12 sylibr G : X × X X u X x X u G x = x x G u = x G : X × X onto X
14 forn G : X × X onto X ran G = X
15 13 14 syl G : X × X X u X x X u G x = x x G u = x ran G = X