Metamath Proof Explorer


Theorem rngmgmbs4

Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion rngmgmbs4 G:X×XXuXxXuGx=xxGu=xranG=X

Proof

Step Hyp Ref Expression
1 r19.12 uXxXuGx=xxGu=xxXuXuGx=xxGu=x
2 simpl uGx=xxGu=xuGx=x
3 2 eqcomd uGx=xxGu=xx=uGx
4 oveq2 y=xuGy=uGx
5 4 rspceeqv xXx=uGxyXx=uGy
6 5 ex xXx=uGxyXx=uGy
7 3 6 syl5 xXuGx=xxGu=xyXx=uGy
8 7 reximdv xXuXuGx=xxGu=xuXyXx=uGy
9 8 ralimia xXuXuGx=xxGu=xxXuXyXx=uGy
10 1 9 syl uXxXuGx=xxGu=xxXuXyXx=uGy
11 10 anim2i G:X×XXuXxXuGx=xxGu=xG:X×XXxXuXyXx=uGy
12 foov G:X×XontoXG:X×XXxXuXyXx=uGy
13 11 12 sylibr G:X×XXuXxXuGx=xxGu=xG:X×XontoX
14 forn G:X×XontoXranG=X
15 13 14 syl G:X×XXuXxXuGx=xxGu=xranG=X