Metamath Proof Explorer


Theorem rngo1cl

Description: The unit of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses ring1cl.1 X = ran 1 st R
ring1cl.2 H = 2 nd R
ring1cl.3 U = GId H
Assertion rngo1cl R RingOps U X

Proof

Step Hyp Ref Expression
1 ring1cl.1 X = ran 1 st R
2 ring1cl.2 H = 2 nd R
3 ring1cl.3 U = GId H
4 2 rngomndo R RingOps H MndOp
5 2 eleq1i H MndOp 2 nd R MndOp
6 mndoismgmOLD 2 nd R MndOp 2 nd R Magma
7 mndoisexid 2 nd R MndOp 2 nd R ExId
8 6 7 jca 2 nd R MndOp 2 nd R Magma 2 nd R ExId
9 5 8 sylbi H MndOp 2 nd R Magma 2 nd R ExId
10 4 9 syl R RingOps 2 nd R Magma 2 nd R ExId
11 elin 2 nd R Magma ExId 2 nd R Magma 2 nd R ExId
12 10 11 sylibr R RingOps 2 nd R Magma ExId
13 eqid ran 2 nd R = ran 2 nd R
14 2 fveq2i GId H = GId 2 nd R
15 3 14 eqtri U = GId 2 nd R
16 13 15 iorlid 2 nd R Magma ExId U ran 2 nd R
17 12 16 syl R RingOps U ran 2 nd R
18 eqid 2 nd R = 2 nd R
19 eqid 1 st R = 1 st R
20 18 19 rngorn1eq R RingOps ran 1 st R = ran 2 nd R
21 eqtr X = ran 1 st R ran 1 st R = ran 2 nd R X = ran 2 nd R
22 21 eleq2d X = ran 1 st R ran 1 st R = ran 2 nd R U X U ran 2 nd R
23 1 20 22 sylancr R RingOps U X U ran 2 nd R
24 17 23 mpbird R RingOps U X