Metamath Proof Explorer


Theorem rngo2

Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G = 1 st R
ringi.2 H = 2 nd R
ringi.3 X = ran G
Assertion rngo2 R RingOps A X x X A G A = x G x H A

Proof

Step Hyp Ref Expression
1 ringi.1 G = 1 st R
2 ringi.2 H = 2 nd R
3 ringi.3 X = ran G
4 1 2 3 rngoid R RingOps A X x X x H A = A A H x = A
5 oveq12 x H A = A x H A = A x H A G x H A = A G A
6 5 anidms x H A = A x H A G x H A = A G A
7 6 eqcomd x H A = A A G A = x H A G x H A
8 simpll R RingOps A X x X R RingOps
9 simpr R RingOps A X x X x X
10 simplr R RingOps A X x X A X
11 1 2 3 rngodir R RingOps x X x X A X x G x H A = x H A G x H A
12 8 9 9 10 11 syl13anc R RingOps A X x X x G x H A = x H A G x H A
13 12 eqeq2d R RingOps A X x X A G A = x G x H A A G A = x H A G x H A
14 7 13 syl5ibr R RingOps A X x X x H A = A A G A = x G x H A
15 14 adantrd R RingOps A X x X x H A = A A H x = A A G A = x G x H A
16 15 reximdva R RingOps A X x X x H A = A A H x = A x X A G A = x G x H A
17 4 16 mpd R RingOps A X x X A G A = x G x H A