Metamath Proof Explorer


Theorem rngo2times

Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unit with itself. (Contributed by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringadd2.b B = Base R
ringadd2.p + ˙ = + R
ringadd2.t · ˙ = R
rngo2times.u 1 ˙ = 1 R
Assertion rngo2times R Ring A B A + ˙ A = 1 ˙ + ˙ 1 ˙ · ˙ A

Proof

Step Hyp Ref Expression
1 ringadd2.b B = Base R
2 ringadd2.p + ˙ = + R
3 ringadd2.t · ˙ = R
4 rngo2times.u 1 ˙ = 1 R
5 1 3 4 ringlidm R Ring A B 1 ˙ · ˙ A = A
6 5 eqcomd R Ring A B A = 1 ˙ · ˙ A
7 6 6 oveq12d R Ring A B A + ˙ A = 1 ˙ · ˙ A + ˙ 1 ˙ · ˙ A
8 simpl R Ring A B R Ring
9 1 4 ringidcl R Ring 1 ˙ B
10 9 adantr R Ring A B 1 ˙ B
11 simpr R Ring A B A B
12 1 2 3 ringdir R Ring 1 ˙ B 1 ˙ B A B 1 ˙ + ˙ 1 ˙ · ˙ A = 1 ˙ · ˙ A + ˙ 1 ˙ · ˙ A
13 8 10 10 11 12 syl13anc R Ring A B 1 ˙ + ˙ 1 ˙ · ˙ A = 1 ˙ · ˙ A + ˙ 1 ˙ · ˙ A
14 7 13 eqtr4d R Ring A B A + ˙ A = 1 ˙ + ˙ 1 ˙ · ˙ A