Metamath Proof Explorer


Theorem rngoablo2

Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009) (New usage is discouraged.)

Ref Expression
Assertion rngoablo2 G H RingOps G AbelOp

Proof

Step Hyp Ref Expression
1 df-br G RingOps H G H RingOps
2 relrngo Rel RingOps
3 2 brrelex12i G RingOps H G V H V
4 op1stg G V H V 1 st G H = G
5 3 4 syl G RingOps H 1 st G H = G
6 1 5 sylbir G H RingOps 1 st G H = G
7 eqid 1 st G H = 1 st G H
8 7 rngoablo G H RingOps 1 st G H AbelOp
9 6 8 eqeltrrd G H RingOps G AbelOp