Metamath Proof Explorer


Theorem rngoass

Description: Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G = 1 st R
ringi.2 H = 2 nd R
ringi.3 X = ran G
Assertion rngoass R RingOps A X B X C X A H B H C = A H B H C

Proof

Step Hyp Ref Expression
1 ringi.1 G = 1 st R
2 ringi.2 H = 2 nd R
3 ringi.3 X = ran G
4 1 2 3 rngoi R RingOps G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
5 4 simprd R RingOps x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
6 5 simpld R RingOps x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z
7 simp1 x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x H y H z = x H y H z
8 7 ralimi z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z z X x H y H z = x H y H z
9 8 2ralimi x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X z X x H y H z = x H y H z
10 6 9 syl R RingOps x X y X z X x H y H z = x H y H z
11 oveq1 x = A x H y = A H y
12 11 oveq1d x = A x H y H z = A H y H z
13 oveq1 x = A x H y H z = A H y H z
14 12 13 eqeq12d x = A x H y H z = x H y H z A H y H z = A H y H z
15 oveq2 y = B A H y = A H B
16 15 oveq1d y = B A H y H z = A H B H z
17 oveq1 y = B y H z = B H z
18 17 oveq2d y = B A H y H z = A H B H z
19 16 18 eqeq12d y = B A H y H z = A H y H z A H B H z = A H B H z
20 oveq2 z = C A H B H z = A H B H C
21 oveq2 z = C B H z = B H C
22 21 oveq2d z = C A H B H z = A H B H C
23 20 22 eqeq12d z = C A H B H z = A H B H z A H B H C = A H B H C
24 14 19 23 rspc3v A X B X C X x X y X z X x H y H z = x H y H z A H B H C = A H B H C
25 10 24 mpan9 R RingOps A X B X C X A H B H C = A H B H C