Metamath Proof Explorer


Theorem rngogrphom

Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011)

Ref Expression
Hypotheses rnggrphom.1 G = 1 st R
rnggrphom.2 J = 1 st S
Assertion rngogrphom Could not format assertion : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnggrphom.1 G = 1 st R
2 rnggrphom.2 J = 1 st S
3 eqid ran G = ran G
4 eqid ran J = ran J
5 1 3 2 4 rngohomf Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : ran G --> ran J ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : ran G --> ran J ) with typecode |-
6 1 3 2 rngohomadd Could not format ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) ) with typecode |-
7 6 eqcomd Could not format ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) with typecode |-
8 7 ralrimivva Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) with typecode |-
9 1 rngogrpo R RingOps G GrpOp
10 2 rngogrpo S RingOps J GrpOp
11 3 4 elghomOLD G GrpOp J GrpOp F G GrpOpHom J F : ran G ran J x ran G y ran G F x J F y = F x G y
12 9 10 11 syl2an R RingOps S RingOps F G GrpOpHom J F : ran G ran J x ran G y ran G F x J F y = F x G y
13 12 3adant3 Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F e. ( G GrpOpHom J ) <-> ( F : ran G --> ran J /\ A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F e. ( G GrpOpHom J ) <-> ( F : ran G --> ran J /\ A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) with typecode |-
14 5 8 13 mpbir2and Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) with typecode |-