Metamath Proof Explorer


Theorem rngogrphom

Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011)

Ref Expression
Hypotheses rnggrphom.1 G=1stR
rnggrphom.2 J=1stS
Assertion rngogrphom Could not format assertion : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnggrphom.1 G=1stR
2 rnggrphom.2 J=1stS
3 eqid ranG=ranG
4 eqid ranJ=ranJ
5 1 3 2 4 rngohomf Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : ran G --> ran J ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : ran G --> ran J ) with typecode |-
6 1 3 2 rngohomadd Could not format ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) ) with typecode |-
7 6 eqcomd Could not format ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) with typecode |-
8 7 ralrimivva Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) with typecode |-
9 1 rngogrpo RRingOpsGGrpOp
10 2 rngogrpo SRingOpsJGrpOp
11 3 4 elghomOLD GGrpOpJGrpOpFGGrpOpHomJF:ranGranJxranGyranGFxJFy=FxGy
12 9 10 11 syl2an RRingOpsSRingOpsFGGrpOpHomJF:ranGranJxranGyranGFxJFy=FxGy
13 12 3adant3 Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F e. ( G GrpOpHom J ) <-> ( F : ran G --> ran J /\ A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F e. ( G GrpOpHom J ) <-> ( F : ran G --> ran J /\ A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) with typecode |-
14 5 8 13 mpbir2and Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) with typecode |-