Metamath Proof Explorer


Theorem rngohom0

Description: A ring homomorphism preserves 0 . (Contributed by Jeff Madsen, 2-Jan-2011)

Ref Expression
Hypotheses rnghom0.1 G = 1 st R
rnghom0.2 Z = GId G
rnghom0.3 J = 1 st S
rnghom0.4 W = GId J
Assertion rngohom0 Could not format assertion : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` Z ) = W ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnghom0.1 G = 1 st R
2 rnghom0.2 Z = GId G
3 rnghom0.3 J = 1 st S
4 rnghom0.4 W = GId J
5 1 rngogrpo R RingOps G GrpOp
6 5 3ad2ant1 Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> G e. GrpOp ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> G e. GrpOp ) with typecode |-
7 3 rngogrpo S RingOps J GrpOp
8 7 3ad2ant2 Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> J e. GrpOp ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> J e. GrpOp ) with typecode |-
9 1 3 rngogrphom Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) with typecode |-
10 2 4 ghomidOLD G GrpOp J GrpOp F G GrpOpHom J F Z = W
11 6 8 9 10 syl3anc Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` Z ) = W ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` Z ) = W ) with typecode |-