Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ring homomorphisms
rngohom0
Next ⟩
rngohomsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
rngohom0
Description:
A ring homomorphism preserves
0
.
(Contributed by
Jeff Madsen
, 2-Jan-2011)
Ref
Expression
Hypotheses
rnghom0.1
⊢
G
=
1
st
⁡
R
rnghom0.2
⊢
Z
=
GId
⁡
G
rnghom0.3
⊢
J
=
1
st
⁡
S
rnghom0.4
⊢
W
=
GId
⁡
J
Assertion
rngohom0
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
⁡
Z
=
W
Proof
Step
Hyp
Ref
Expression
1
rnghom0.1
⊢
G
=
1
st
⁡
R
2
rnghom0.2
⊢
Z
=
GId
⁡
G
3
rnghom0.3
⊢
J
=
1
st
⁡
S
4
rnghom0.4
⊢
W
=
GId
⁡
J
5
1
rngogrpo
⊢
R
∈
RingOps
→
G
∈
GrpOp
6
5
3ad2ant1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
G
∈
GrpOp
7
3
rngogrpo
⊢
S
∈
RingOps
→
J
∈
GrpOp
8
7
3ad2ant2
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
J
∈
GrpOp
9
1
3
rngogrphom
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
∈
G
GrpOpHom
J
10
2
4
ghomidOLD
⊢
G
∈
GrpOp
∧
J
∈
GrpOp
∧
F
∈
G
GrpOpHom
J
→
F
⁡
Z
=
W
11
6
8
9
10
syl3anc
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
⁡
Z
=
W