Metamath Proof Explorer


Theorem rngohom0

Description: A ring homomorphism preserves 0 . (Contributed by Jeff Madsen, 2-Jan-2011)

Ref Expression
Hypotheses rnghom0.1 G = 1 st R
rnghom0.2 Z = GId G
rnghom0.3 J = 1 st S
rnghom0.4 W = GId J
Assertion rngohom0 R RingOps S RingOps F R RngHom S F Z = W

Proof

Step Hyp Ref Expression
1 rnghom0.1 G = 1 st R
2 rnghom0.2 Z = GId G
3 rnghom0.3 J = 1 st S
4 rnghom0.4 W = GId J
5 1 rngogrpo R RingOps G GrpOp
6 5 3ad2ant1 R RingOps S RingOps F R RngHom S G GrpOp
7 3 rngogrpo S RingOps J GrpOp
8 7 3ad2ant2 R RingOps S RingOps F R RngHom S J GrpOp
9 1 3 rngogrphom R RingOps S RingOps F R RngHom S F G GrpOpHom J
10 2 4 ghomidOLD G GrpOp J GrpOp F G GrpOpHom J F Z = W
11 6 8 9 10 syl3anc R RingOps S RingOps F R RngHom S F Z = W