Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ring homomorphisms
rngohom1
Next ⟩
rngohomadd
Metamath Proof Explorer
Ascii
Unicode
Theorem
rngohom1
Description:
A ring homomorphism preserves
1
.
(Contributed by
Jeff Madsen
, 24-Jun-2011)
Ref
Expression
Hypotheses
rnghom1.1
⊢
H
=
2
nd
⁡
R
rnghom1.2
⊢
U
=
GId
⁡
H
rnghom1.3
⊢
K
=
2
nd
⁡
S
rnghom1.4
⊢
V
=
GId
⁡
K
Assertion
rngohom1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
⁡
U
=
V
Proof
Step
Hyp
Ref
Expression
1
rnghom1.1
⊢
H
=
2
nd
⁡
R
2
rnghom1.2
⊢
U
=
GId
⁡
H
3
rnghom1.3
⊢
K
=
2
nd
⁡
S
4
rnghom1.4
⊢
V
=
GId
⁡
K
5
eqid
⊢
1
st
⁡
R
=
1
st
⁡
R
6
eqid
⊢
ran
⁡
1
st
⁡
R
=
ran
⁡
1
st
⁡
R
7
eqid
⊢
1
st
⁡
S
=
1
st
⁡
S
8
eqid
⊢
ran
⁡
1
st
⁡
S
=
ran
⁡
1
st
⁡
S
9
5
1
6
2
7
3
8
4
isrngohom
⊢
R
∈
RingOps
∧
S
∈
RingOps
→
F
∈
R
RngHom
S
↔
F
:
ran
⁡
1
st
⁡
R
⟶
ran
⁡
1
st
⁡
S
∧
F
⁡
U
=
V
∧
∀
x
∈
ran
⁡
1
st
⁡
R
∀
y
∈
ran
⁡
1
st
⁡
R
F
⁡
x
1
st
⁡
R
y
=
F
⁡
x
1
st
⁡
S
F
⁡
y
∧
F
⁡
x
H
y
=
F
⁡
x
K
F
⁡
y
10
9
biimpa
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
:
ran
⁡
1
st
⁡
R
⟶
ran
⁡
1
st
⁡
S
∧
F
⁡
U
=
V
∧
∀
x
∈
ran
⁡
1
st
⁡
R
∀
y
∈
ran
⁡
1
st
⁡
R
F
⁡
x
1
st
⁡
R
y
=
F
⁡
x
1
st
⁡
S
F
⁡
y
∧
F
⁡
x
H
y
=
F
⁡
x
K
F
⁡
y
11
10
simp2d
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
⁡
U
=
V
12
11
3impa
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
⁡
U
=
V