Metamath Proof Explorer


Theorem rngohomadd

Description: Ring homomorphisms preserve addition. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghomadd.1 G = 1 st R
rnghomadd.2 X = ran G
rnghomadd.3 J = 1 st S
Assertion rngohomadd R RingOps S RingOps F R RngHom S A X B X F A G B = F A J F B

Proof

Step Hyp Ref Expression
1 rnghomadd.1 G = 1 st R
2 rnghomadd.2 X = ran G
3 rnghomadd.3 J = 1 st S
4 eqid 2 nd R = 2 nd R
5 eqid GId 2 nd R = GId 2 nd R
6 eqid 2 nd S = 2 nd S
7 eqid ran J = ran J
8 eqid GId 2 nd S = GId 2 nd S
9 1 4 2 5 3 6 7 8 isrngohom R RingOps S RingOps F R RngHom S F : X ran J F GId 2 nd R = GId 2 nd S x X y X F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y
10 9 biimpa R RingOps S RingOps F R RngHom S F : X ran J F GId 2 nd R = GId 2 nd S x X y X F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y
11 10 simp3d R RingOps S RingOps F R RngHom S x X y X F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y
12 11 3impa R RingOps S RingOps F R RngHom S x X y X F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y
13 simpl F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y F x G y = F x J F y
14 13 2ralimi x X y X F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y x X y X F x G y = F x J F y
15 12 14 syl R RingOps S RingOps F R RngHom S x X y X F x G y = F x J F y
16 fvoveq1 x = A F x G y = F A G y
17 fveq2 x = A F x = F A
18 17 oveq1d x = A F x J F y = F A J F y
19 16 18 eqeq12d x = A F x G y = F x J F y F A G y = F A J F y
20 oveq2 y = B A G y = A G B
21 20 fveq2d y = B F A G y = F A G B
22 fveq2 y = B F y = F B
23 22 oveq2d y = B F A J F y = F A J F B
24 21 23 eqeq12d y = B F A G y = F A J F y F A G B = F A J F B
25 19 24 rspc2v A X B X x X y X F x G y = F x J F y F A G B = F A J F B
26 15 25 mpan9 R RingOps S RingOps F R RngHom S A X B X F A G B = F A J F B