Metamath Proof Explorer


Theorem rngohomcl

Description: Closure law for a ring homomorphism. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghomf.1 G = 1 st R
rnghomf.2 X = ran G
rnghomf.3 J = 1 st S
rnghomf.4 Y = ran J
Assertion rngohomcl Could not format assertion : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ A e. X ) -> ( F ` A ) e. Y ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnghomf.1 G = 1 st R
2 rnghomf.2 X = ran G
3 rnghomf.3 J = 1 st S
4 rnghomf.4 Y = ran J
5 1 2 3 4 rngohomf Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) with typecode |-
6 5 ffvelcdmda Could not format ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ A e. X ) -> ( F ` A ) e. Y ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ A e. X ) -> ( F ` A ) e. Y ) with typecode |-