Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ring homomorphisms
rngohomf
Next ⟩
rngohomcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
rngohomf
Description:
A ring homomorphism is a function.
(Contributed by
Jeff Madsen
, 19-Jun-2010)
Ref
Expression
Hypotheses
rnghomf.1
⊢
G
=
1
st
⁡
R
rnghomf.2
⊢
X
=
ran
⁡
G
rnghomf.3
⊢
J
=
1
st
⁡
S
rnghomf.4
⊢
Y
=
ran
⁡
J
Assertion
rngohomf
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
:
X
⟶
Y
Proof
Step
Hyp
Ref
Expression
1
rnghomf.1
⊢
G
=
1
st
⁡
R
2
rnghomf.2
⊢
X
=
ran
⁡
G
3
rnghomf.3
⊢
J
=
1
st
⁡
S
4
rnghomf.4
⊢
Y
=
ran
⁡
J
5
eqid
⊢
2
nd
⁡
R
=
2
nd
⁡
R
6
eqid
⊢
GId
⁡
2
nd
⁡
R
=
GId
⁡
2
nd
⁡
R
7
eqid
⊢
2
nd
⁡
S
=
2
nd
⁡
S
8
eqid
⊢
GId
⁡
2
nd
⁡
S
=
GId
⁡
2
nd
⁡
S
9
1
5
2
6
3
7
4
8
isrngohom
⊢
R
∈
RingOps
∧
S
∈
RingOps
→
F
∈
R
RngHom
S
↔
F
:
X
⟶
Y
∧
F
⁡
GId
⁡
2
nd
⁡
R
=
GId
⁡
2
nd
⁡
S
∧
∀
x
∈
X
∀
y
∈
X
F
⁡
x
G
y
=
F
⁡
x
J
F
⁡
y
∧
F
⁡
x
2
nd
⁡
R
y
=
F
⁡
x
2
nd
⁡
S
F
⁡
y
10
9
biimpa
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
:
X
⟶
Y
∧
F
⁡
GId
⁡
2
nd
⁡
R
=
GId
⁡
2
nd
⁡
S
∧
∀
x
∈
X
∀
y
∈
X
F
⁡
x
G
y
=
F
⁡
x
J
F
⁡
y
∧
F
⁡
x
2
nd
⁡
R
y
=
F
⁡
x
2
nd
⁡
S
F
⁡
y
11
10
simp1d
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
:
X
⟶
Y
12
11
3impa
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
:
X
⟶
Y