Step |
Hyp |
Ref |
Expression |
1 |
|
rnghomf.1 |
|
2 |
|
rnghomf.2 |
|
3 |
|
rnghomf.3 |
|
4 |
|
rnghomf.4 |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1 5 2 6 3 7 4 8
|
isrngohom |
Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) ) with typecode |- |
10 |
9
|
biimpa |
Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) with typecode |- |
11 |
10
|
simp1d |
Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) with typecode |- |
12 |
11
|
3impa |
Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) with typecode |- |