Metamath Proof Explorer


Theorem rngohomf

Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses rnghomf.1 G = 1 st R
rnghomf.2 X = ran G
rnghomf.3 J = 1 st S
rnghomf.4 Y = ran J
Assertion rngohomf Could not format assertion : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnghomf.1 G = 1 st R
2 rnghomf.2 X = ran G
3 rnghomf.3 J = 1 st S
4 rnghomf.4 Y = ran J
5 eqid 2 nd R = 2 nd R
6 eqid GId 2 nd R = GId 2 nd R
7 eqid 2 nd S = 2 nd S
8 eqid GId 2 nd S = GId 2 nd S
9 1 5 2 6 3 7 4 8 isrngohom Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) ) with typecode |-
10 9 biimpa Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) with typecode |-
11 10 simp1d Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) with typecode |-
12 11 3impa Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) with typecode |-