Metamath Proof Explorer


Theorem rngohomf

Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses rnghomf.1 G = 1 st R
rnghomf.2 X = ran G
rnghomf.3 J = 1 st S
rnghomf.4 Y = ran J
Assertion rngohomf R RingOps S RingOps F R RngHom S F : X Y

Proof

Step Hyp Ref Expression
1 rnghomf.1 G = 1 st R
2 rnghomf.2 X = ran G
3 rnghomf.3 J = 1 st S
4 rnghomf.4 Y = ran J
5 eqid 2 nd R = 2 nd R
6 eqid GId 2 nd R = GId 2 nd R
7 eqid 2 nd S = 2 nd S
8 eqid GId 2 nd S = GId 2 nd S
9 1 5 2 6 3 7 4 8 isrngohom R RingOps S RingOps F R RngHom S F : X Y F GId 2 nd R = GId 2 nd S x X y X F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y
10 9 biimpa R RingOps S RingOps F R RngHom S F : X Y F GId 2 nd R = GId 2 nd S x X y X F x G y = F x J F y F x 2 nd R y = F x 2 nd S F y
11 10 simp1d R RingOps S RingOps F R RngHom S F : X Y
12 11 3impa R RingOps S RingOps F R RngHom S F : X Y