Metamath Proof Explorer


Theorem rngohommul

Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghommul.1 G = 1 st R
rnghommul.2 X = ran G
rnghommul.3 H = 2 nd R
rnghommul.4 K = 2 nd S
Assertion rngohommul R RingOps S RingOps F R RngHom S A X B X F A H B = F A K F B

Proof

Step Hyp Ref Expression
1 rnghommul.1 G = 1 st R
2 rnghommul.2 X = ran G
3 rnghommul.3 H = 2 nd R
4 rnghommul.4 K = 2 nd S
5 eqid GId H = GId H
6 eqid 1 st S = 1 st S
7 eqid ran 1 st S = ran 1 st S
8 eqid GId K = GId K
9 1 3 2 5 6 4 7 8 isrngohom R RingOps S RingOps F R RngHom S F : X ran 1 st S F GId H = GId K x X y X F x G y = F x 1 st S F y F x H y = F x K F y
10 9 biimpa R RingOps S RingOps F R RngHom S F : X ran 1 st S F GId H = GId K x X y X F x G y = F x 1 st S F y F x H y = F x K F y
11 10 simp3d R RingOps S RingOps F R RngHom S x X y X F x G y = F x 1 st S F y F x H y = F x K F y
12 11 3impa R RingOps S RingOps F R RngHom S x X y X F x G y = F x 1 st S F y F x H y = F x K F y
13 simpr F x G y = F x 1 st S F y F x H y = F x K F y F x H y = F x K F y
14 13 2ralimi x X y X F x G y = F x 1 st S F y F x H y = F x K F y x X y X F x H y = F x K F y
15 12 14 syl R RingOps S RingOps F R RngHom S x X y X F x H y = F x K F y
16 fvoveq1 x = A F x H y = F A H y
17 fveq2 x = A F x = F A
18 17 oveq1d x = A F x K F y = F A K F y
19 16 18 eqeq12d x = A F x H y = F x K F y F A H y = F A K F y
20 oveq2 y = B A H y = A H B
21 20 fveq2d y = B F A H y = F A H B
22 fveq2 y = B F y = F B
23 22 oveq2d y = B F A K F y = F A K F B
24 21 23 eqeq12d y = B F A H y = F A K F y F A H B = F A K F B
25 19 24 rspc2v A X B X x X y X F x H y = F x K F y F A H B = F A K F B
26 15 25 mpan9 R RingOps S RingOps F R RngHom S A X B X F A H B = F A K F B