Metamath Proof Explorer


Theorem rngohomsub

Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011)

Ref Expression
Hypotheses rnghomsub.1 G = 1 st R
rnghomsub.2 X = ran G
rnghomsub.3 H = / g G
rnghomsub.4 J = 1 st S
rnghomsub.5 K = / g J
Assertion rngohomsub Could not format assertion : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnghomsub.1 G = 1 st R
2 rnghomsub.2 X = ran G
3 rnghomsub.3 H = / g G
4 rnghomsub.4 J = 1 st S
5 rnghomsub.5 K = / g J
6 1 rngogrpo R RingOps G GrpOp
7 6 3ad2ant1 Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> G e. GrpOp ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> G e. GrpOp ) with typecode |-
8 4 rngogrpo S RingOps J GrpOp
9 8 3ad2ant2 Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> J e. GrpOp ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> J e. GrpOp ) with typecode |-
10 1 4 rngogrphom Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) with typecode |-
11 7 9 10 3jca Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( G e. GrpOp /\ J e. GrpOp /\ F e. ( G GrpOpHom J ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( G e. GrpOp /\ J e. GrpOp /\ F e. ( G GrpOpHom J ) ) ) with typecode |-
12 2 3 5 ghomdiv G GrpOp J GrpOp F G GrpOpHom J A X B X F A H B = F A K F B
13 11 12 sylan Could not format ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) with typecode |-