Metamath Proof Explorer


Theorem rngohomsub

Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011)

Ref Expression
Hypotheses rnghomsub.1 G = 1 st R
rnghomsub.2 X = ran G
rnghomsub.3 H = / g G
rnghomsub.4 J = 1 st S
rnghomsub.5 K = / g J
Assertion rngohomsub R RingOps S RingOps F R RngHom S A X B X F A H B = F A K F B

Proof

Step Hyp Ref Expression
1 rnghomsub.1 G = 1 st R
2 rnghomsub.2 X = ran G
3 rnghomsub.3 H = / g G
4 rnghomsub.4 J = 1 st S
5 rnghomsub.5 K = / g J
6 1 rngogrpo R RingOps G GrpOp
7 6 3ad2ant1 R RingOps S RingOps F R RngHom S G GrpOp
8 4 rngogrpo S RingOps J GrpOp
9 8 3ad2ant2 R RingOps S RingOps F R RngHom S J GrpOp
10 1 4 rngogrphom R RingOps S RingOps F R RngHom S F G GrpOpHom J
11 7 9 10 3jca R RingOps S RingOps F R RngHom S G GrpOp J GrpOp F G GrpOpHom J
12 2 3 5 ghomdiv G GrpOp J GrpOp F G GrpOpHom J A X B X F A H B = F A K F B
13 11 12 sylan R RingOps S RingOps F R RngHom S A X B X F A H B = F A K F B