Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ring homomorphisms
rngohomsub
Next ⟩
rngohomco
Metamath Proof Explorer
Ascii
Unicode
Theorem
rngohomsub
Description:
Ring homomorphisms preserve subtraction.
(Contributed by
Jeff Madsen
, 15-Jun-2011)
Ref
Expression
Hypotheses
rnghomsub.1
⊢
G
=
1
st
⁡
R
rnghomsub.2
⊢
X
=
ran
⁡
G
rnghomsub.3
⊢
H
=
/
g
⁡
G
rnghomsub.4
⊢
J
=
1
st
⁡
S
rnghomsub.5
⊢
K
=
/
g
⁡
J
Assertion
rngohomsub
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
A
∈
X
∧
B
∈
X
→
F
⁡
A
H
B
=
F
⁡
A
K
F
⁡
B
Proof
Step
Hyp
Ref
Expression
1
rnghomsub.1
⊢
G
=
1
st
⁡
R
2
rnghomsub.2
⊢
X
=
ran
⁡
G
3
rnghomsub.3
⊢
H
=
/
g
⁡
G
4
rnghomsub.4
⊢
J
=
1
st
⁡
S
5
rnghomsub.5
⊢
K
=
/
g
⁡
J
6
1
rngogrpo
⊢
R
∈
RingOps
→
G
∈
GrpOp
7
6
3ad2ant1
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
G
∈
GrpOp
8
4
rngogrpo
⊢
S
∈
RingOps
→
J
∈
GrpOp
9
8
3ad2ant2
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
J
∈
GrpOp
10
1
4
rngogrphom
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
F
∈
G
GrpOpHom
J
11
7
9
10
3jca
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
→
G
∈
GrpOp
∧
J
∈
GrpOp
∧
F
∈
G
GrpOpHom
J
12
2
3
5
ghomdiv
⊢
G
∈
GrpOp
∧
J
∈
GrpOp
∧
F
∈
G
GrpOpHom
J
∧
A
∈
X
∧
B
∈
X
→
F
⁡
A
H
B
=
F
⁡
A
K
F
⁡
B
13
11
12
sylan
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngHom
S
∧
A
∈
X
∧
B
∈
X
→
F
⁡
A
H
B
=
F
⁡
A
K
F
⁡
B