Metamath Proof Explorer


Theorem rngoideu

Description: The unity element of a ring is unique. (Contributed by NM, 4-Apr-2009) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G=1stR
ringi.2 H=2ndR
ringi.3 X=ranG
Assertion rngoideu RRingOps∃!uXxXuHx=xxHu=x

Proof

Step Hyp Ref Expression
1 ringi.1 G=1stR
2 ringi.2 H=2ndR
3 ringi.3 X=ranG
4 1 2 3 rngoi RRingOpsGAbelOpH:X×XXuXxXyXuHxHy=uHxHyuHxGy=uHxGuHyuGxHy=uHyGxHyuXxXuHx=xxHu=x
5 4 simprrd RRingOpsuXxXuHx=xxHu=x
6 simpl uHx=xxHu=xuHx=x
7 6 ralimi xXuHx=xxHu=xxXuHx=x
8 oveq2 x=yuHx=uHy
9 id x=yx=y
10 8 9 eqeq12d x=yuHx=xuHy=y
11 10 rspcv yXxXuHx=xuHy=y
12 7 11 syl5 yXxXuHx=xxHu=xuHy=y
13 simpr yHx=xxHy=xxHy=x
14 13 ralimi xXyHx=xxHy=xxXxHy=x
15 oveq1 x=uxHy=uHy
16 id x=ux=u
17 15 16 eqeq12d x=uxHy=xuHy=u
18 17 rspcv uXxXxHy=xuHy=u
19 14 18 syl5 uXxXyHx=xxHy=xuHy=u
20 12 19 im2anan9r uXyXxXuHx=xxHu=xxXyHx=xxHy=xuHy=yuHy=u
21 eqtr2 uHy=yuHy=uy=u
22 21 equcomd uHy=yuHy=uu=y
23 20 22 syl6 uXyXxXuHx=xxHu=xxXyHx=xxHy=xu=y
24 23 rgen2 uXyXxXuHx=xxHu=xxXyHx=xxHy=xu=y
25 oveq1 u=yuHx=yHx
26 25 eqeq1d u=yuHx=xyHx=x
27 26 ovanraleqv u=yxXuHx=xxHu=xxXyHx=xxHy=x
28 27 reu4 ∃!uXxXuHx=xxHu=xuXxXuHx=xxHu=xuXyXxXuHx=xxHu=xxXyHx=xxHy=xu=y
29 5 24 28 sylanblrc RRingOps∃!uXxXuHx=xxHu=x