Metamath Proof Explorer


Theorem rngoideu

Description: The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G = 1 st R
ringi.2 H = 2 nd R
ringi.3 X = ran G
Assertion rngoideu R RingOps ∃! u X x X u H x = x x H u = x

Proof

Step Hyp Ref Expression
1 ringi.1 G = 1 st R
2 ringi.2 H = 2 nd R
3 ringi.3 X = ran G
4 1 2 3 rngoi R RingOps G AbelOp H : X × X X u X x X y X u H x H y = u H x H y u H x G y = u H x G u H y u G x H y = u H y G x H y u X x X u H x = x x H u = x
5 4 simprrd R RingOps u X x X u H x = x x H u = x
6 simpl u H x = x x H u = x u H x = x
7 6 ralimi x X u H x = x x H u = x x X u H x = x
8 oveq2 x = y u H x = u H y
9 id x = y x = y
10 8 9 eqeq12d x = y u H x = x u H y = y
11 10 rspcv y X x X u H x = x u H y = y
12 7 11 syl5 y X x X u H x = x x H u = x u H y = y
13 simpr y H x = x x H y = x x H y = x
14 13 ralimi x X y H x = x x H y = x x X x H y = x
15 oveq1 x = u x H y = u H y
16 id x = u x = u
17 15 16 eqeq12d x = u x H y = x u H y = u
18 17 rspcv u X x X x H y = x u H y = u
19 14 18 syl5 u X x X y H x = x x H y = x u H y = u
20 12 19 im2anan9r u X y X x X u H x = x x H u = x x X y H x = x x H y = x u H y = y u H y = u
21 eqtr2 u H y = y u H y = u y = u
22 21 equcomd u H y = y u H y = u u = y
23 20 22 syl6 u X y X x X u H x = x x H u = x x X y H x = x x H y = x u = y
24 23 rgen2 u X y X x X u H x = x x H u = x x X y H x = x x H y = x u = y
25 oveq1 u = y u H x = y H x
26 25 eqeq1d u = y u H x = x y H x = x
27 26 ovanraleqv u = y x X u H x = x x H u = x x X y H x = x x H y = x
28 27 reu4 ∃! u X x X u H x = x x H u = x u X x X u H x = x x H u = x u X y X x X u H x = x x H u = x x X y H x = x x H y = x u = y
29 5 24 28 sylanblrc R RingOps ∃! u X x X u H x = x x H u = x