Metamath Proof Explorer


Theorem rngoiso1o

Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1 G = 1 st R
rngisoval.2 X = ran G
rngisoval.3 J = 1 st S
rngisoval.4 Y = ran J
Assertion rngoiso1o Could not format assertion : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) with typecode |-

Proof

Step Hyp Ref Expression
1 rngisoval.1 G = 1 st R
2 rngisoval.2 X = ran G
3 rngisoval.3 J = 1 st S
4 rngisoval.4 Y = ran J
5 1 2 3 4 isrngoiso Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) with typecode |-
6 5 simplbda Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) with typecode |-
7 6 3impa Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F : X -1-1-onto-> Y ) with typecode |-