Metamath Proof Explorer


Theorem rngoiso1o

Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1 G = 1 st R
rngisoval.2 X = ran G
rngisoval.3 J = 1 st S
rngisoval.4 Y = ran J
Assertion rngoiso1o R RingOps S RingOps F R RngIso S F : X 1-1 onto Y

Proof

Step Hyp Ref Expression
1 rngisoval.1 G = 1 st R
2 rngisoval.2 X = ran G
3 rngisoval.3 J = 1 st S
4 rngisoval.4 Y = ran J
5 1 2 3 4 isrngoiso R RingOps S RingOps F R RngIso S F R RngHom S F : X 1-1 onto Y
6 5 simplbda R RingOps S RingOps F R RngIso S F : X 1-1 onto Y
7 6 3impa R RingOps S RingOps F R RngIso S F : X 1-1 onto Y