Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ring homomorphisms
rngoiso1o
Next ⟩
rngoisohom
Metamath Proof Explorer
Ascii
Unicode
Theorem
rngoiso1o
Description:
A ring isomorphism is a bijection.
(Contributed by
Jeff Madsen
, 16-Jun-2011)
Ref
Expression
Hypotheses
rngisoval.1
⊢
G
=
1
st
⁡
R
rngisoval.2
⊢
X
=
ran
⁡
G
rngisoval.3
⊢
J
=
1
st
⁡
S
rngisoval.4
⊢
Y
=
ran
⁡
J
Assertion
rngoiso1o
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngIso
S
→
F
:
X
⟶
1-1 onto
Y
Proof
Step
Hyp
Ref
Expression
1
rngisoval.1
⊢
G
=
1
st
⁡
R
2
rngisoval.2
⊢
X
=
ran
⁡
G
3
rngisoval.3
⊢
J
=
1
st
⁡
S
4
rngisoval.4
⊢
Y
=
ran
⁡
J
5
1
2
3
4
isrngoiso
⊢
R
∈
RingOps
∧
S
∈
RingOps
→
F
∈
R
RngIso
S
↔
F
∈
R
RngHom
S
∧
F
:
X
⟶
1-1 onto
Y
6
5
simplbda
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngIso
S
→
F
:
X
⟶
1-1 onto
Y
7
6
3impa
⊢
R
∈
RingOps
∧
S
∈
RingOps
∧
F
∈
R
RngIso
S
→
F
:
X
⟶
1-1 onto
Y