Metamath Proof Explorer


Theorem rngoisoco

Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Assertion rngoisoco R RingOps S RingOps T RingOps F R RngIso S G S RngIso T G F R RngIso T

Proof

Step Hyp Ref Expression
1 rngoisohom R RingOps S RingOps F R RngIso S F R RngHom S
2 1 3expa R RingOps S RingOps F R RngIso S F R RngHom S
3 2 3adantl3 R RingOps S RingOps T RingOps F R RngIso S F R RngHom S
4 rngoisohom S RingOps T RingOps G S RngIso T G S RngHom T
5 4 3expa S RingOps T RingOps G S RngIso T G S RngHom T
6 5 3adantl1 R RingOps S RingOps T RingOps G S RngIso T G S RngHom T
7 3 6 anim12dan R RingOps S RingOps T RingOps F R RngIso S G S RngIso T F R RngHom S G S RngHom T
8 rngohomco R RingOps S RingOps T RingOps F R RngHom S G S RngHom T G F R RngHom T
9 7 8 syldan R RingOps S RingOps T RingOps F R RngIso S G S RngIso T G F R RngHom T
10 eqid 1 st S = 1 st S
11 eqid ran 1 st S = ran 1 st S
12 eqid 1 st T = 1 st T
13 eqid ran 1 st T = ran 1 st T
14 10 11 12 13 rngoiso1o S RingOps T RingOps G S RngIso T G : ran 1 st S 1-1 onto ran 1 st T
15 14 3expa S RingOps T RingOps G S RngIso T G : ran 1 st S 1-1 onto ran 1 st T
16 15 3adantl1 R RingOps S RingOps T RingOps G S RngIso T G : ran 1 st S 1-1 onto ran 1 st T
17 16 adantrl R RingOps S RingOps T RingOps F R RngIso S G S RngIso T G : ran 1 st S 1-1 onto ran 1 st T
18 eqid 1 st R = 1 st R
19 eqid ran 1 st R = ran 1 st R
20 18 19 10 11 rngoiso1o R RingOps S RingOps F R RngIso S F : ran 1 st R 1-1 onto ran 1 st S
21 20 3expa R RingOps S RingOps F R RngIso S F : ran 1 st R 1-1 onto ran 1 st S
22 21 3adantl3 R RingOps S RingOps T RingOps F R RngIso S F : ran 1 st R 1-1 onto ran 1 st S
23 22 adantrr R RingOps S RingOps T RingOps F R RngIso S G S RngIso T F : ran 1 st R 1-1 onto ran 1 st S
24 f1oco G : ran 1 st S 1-1 onto ran 1 st T F : ran 1 st R 1-1 onto ran 1 st S G F : ran 1 st R 1-1 onto ran 1 st T
25 17 23 24 syl2anc R RingOps S RingOps T RingOps F R RngIso S G S RngIso T G F : ran 1 st R 1-1 onto ran 1 st T
26 18 19 12 13 isrngoiso R RingOps T RingOps G F R RngIso T G F R RngHom T G F : ran 1 st R 1-1 onto ran 1 st T
27 26 3adant2 R RingOps S RingOps T RingOps G F R RngIso T G F R RngHom T G F : ran 1 st R 1-1 onto ran 1 st T
28 27 adantr R RingOps S RingOps T RingOps F R RngIso S G S RngIso T G F R RngIso T G F R RngHom T G F : ran 1 st R 1-1 onto ran 1 st T
29 9 25 28 mpbir2and R RingOps S RingOps T RingOps F R RngIso S G S RngIso T G F R RngIso T