Metamath Proof Explorer


Theorem rngoisohom

Description: A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Assertion rngoisohom Could not format assertion : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid 1 st R = 1 st R
2 eqid ran 1 st R = ran 1 st R
3 eqid 1 st S = 1 st S
4 eqid ran 1 st S = ran 1 st S
5 1 2 3 4 isrngoiso Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : ran ( 1st ` R ) -1-1-onto-> ran ( 1st ` S ) ) ) ) with typecode |-
6 5 simprbda Could not format ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) : No typesetting found for |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) with typecode |-
7 6 3impa Could not format ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsIso S ) ) -> F e. ( R RingOpsHom S ) ) with typecode |-