Metamath Proof Explorer


Theorem rngokerinj

Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngkerinj.1 G = 1 st R
rngkerinj.2 X = ran G
rngkerinj.3 W = GId G
rngkerinj.4 J = 1 st S
rngkerinj.5 Y = ran J
rngkerinj.6 Z = GId J
Assertion rngokerinj R RingOps S RingOps F R RngHom S F : X 1-1 Y F -1 Z = W

Proof

Step Hyp Ref Expression
1 rngkerinj.1 G = 1 st R
2 rngkerinj.2 X = ran G
3 rngkerinj.3 W = GId G
4 rngkerinj.4 J = 1 st S
5 rngkerinj.5 Y = ran J
6 rngkerinj.6 Z = GId J
7 eqid 1 st R = 1 st R
8 7 rngogrpo R RingOps 1 st R GrpOp
9 8 3ad2ant1 R RingOps S RingOps F R RngHom S 1 st R GrpOp
10 eqid 1 st S = 1 st S
11 10 rngogrpo S RingOps 1 st S GrpOp
12 11 3ad2ant2 R RingOps S RingOps F R RngHom S 1 st S GrpOp
13 7 10 rngogrphom R RingOps S RingOps F R RngHom S F 1 st R GrpOpHom 1 st S
14 1 rneqi ran G = ran 1 st R
15 2 14 eqtri X = ran 1 st R
16 1 fveq2i GId G = GId 1 st R
17 3 16 eqtri W = GId 1 st R
18 4 rneqi ran J = ran 1 st S
19 5 18 eqtri Y = ran 1 st S
20 4 fveq2i GId J = GId 1 st S
21 6 20 eqtri Z = GId 1 st S
22 15 17 19 21 grpokerinj 1 st R GrpOp 1 st S GrpOp F 1 st R GrpOpHom 1 st S F : X 1-1 Y F -1 Z = W
23 9 12 13 22 syl3anc R RingOps S RingOps F R RngHom S F : X 1-1 Y F -1 Z = W