Metamath Proof Explorer


Theorem rngomndo

Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis unmnd.1 H = 2 nd R
Assertion rngomndo R RingOps H MndOp

Proof

Step Hyp Ref Expression
1 unmnd.1 H = 2 nd R
2 eqid 1 st R = 1 st R
3 eqid ran 1 st R = ran 1 st R
4 2 1 3 rngosm R RingOps H : ran 1 st R × ran 1 st R ran 1 st R
5 2 1 3 rngoass R RingOps x ran 1 st R y ran 1 st R z ran 1 st R x H y H z = x H y H z
6 5 ralrimivvva R RingOps x ran 1 st R y ran 1 st R z ran 1 st R x H y H z = x H y H z
7 2 1 3 rngoi R RingOps 1 st R AbelOp H : ran 1 st R × ran 1 st R ran 1 st R x ran 1 st R y ran 1 st R z ran 1 st R x H y H z = x H y H z x H y 1 st R z = x H y 1 st R x H z x 1 st R y H z = x H z 1 st R y H z x ran 1 st R y ran 1 st R x H y = y y H x = y
8 7 simprrd R RingOps x ran 1 st R y ran 1 st R x H y = y y H x = y
9 1 2 rngorn1 R RingOps ran 1 st R = dom dom H
10 xpid11 dom dom H × dom dom H = ran 1 st R × ran 1 st R dom dom H = ran 1 st R
11 10 biimpri dom dom H = ran 1 st R dom dom H × dom dom H = ran 1 st R × ran 1 st R
12 feq23 dom dom H × dom dom H = ran 1 st R × ran 1 st R dom dom H = ran 1 st R H : dom dom H × dom dom H dom dom H H : ran 1 st R × ran 1 st R ran 1 st R
13 11 12 mpancom dom dom H = ran 1 st R H : dom dom H × dom dom H dom dom H H : ran 1 st R × ran 1 st R ran 1 st R
14 raleq dom dom H = ran 1 st R z dom dom H x H y H z = x H y H z z ran 1 st R x H y H z = x H y H z
15 14 raleqbi1dv dom dom H = ran 1 st R y dom dom H z dom dom H x H y H z = x H y H z y ran 1 st R z ran 1 st R x H y H z = x H y H z
16 15 raleqbi1dv dom dom H = ran 1 st R x dom dom H y dom dom H z dom dom H x H y H z = x H y H z x ran 1 st R y ran 1 st R z ran 1 st R x H y H z = x H y H z
17 raleq dom dom H = ran 1 st R y dom dom H x H y = y y H x = y y ran 1 st R x H y = y y H x = y
18 17 rexeqbi1dv dom dom H = ran 1 st R x dom dom H y dom dom H x H y = y y H x = y x ran 1 st R y ran 1 st R x H y = y y H x = y
19 13 16 18 3anbi123d dom dom H = ran 1 st R H : dom dom H × dom dom H dom dom H x dom dom H y dom dom H z dom dom H x H y H z = x H y H z x dom dom H y dom dom H x H y = y y H x = y H : ran 1 st R × ran 1 st R ran 1 st R x ran 1 st R y ran 1 st R z ran 1 st R x H y H z = x H y H z x ran 1 st R y ran 1 st R x H y = y y H x = y
20 19 eqcoms ran 1 st R = dom dom H H : dom dom H × dom dom H dom dom H x dom dom H y dom dom H z dom dom H x H y H z = x H y H z x dom dom H y dom dom H x H y = y y H x = y H : ran 1 st R × ran 1 st R ran 1 st R x ran 1 st R y ran 1 st R z ran 1 st R x H y H z = x H y H z x ran 1 st R y ran 1 st R x H y = y y H x = y
21 9 20 syl R RingOps H : dom dom H × dom dom H dom dom H x dom dom H y dom dom H z dom dom H x H y H z = x H y H z x dom dom H y dom dom H x H y = y y H x = y H : ran 1 st R × ran 1 st R ran 1 st R x ran 1 st R y ran 1 st R z ran 1 st R x H y H z = x H y H z x ran 1 st R y ran 1 st R x H y = y y H x = y
22 4 6 8 21 mpbir3and R RingOps H : dom dom H × dom dom H dom dom H x dom dom H y dom dom H z dom dom H x H y H z = x H y H z x dom dom H y dom dom H x H y = y y H x = y
23 fvex 2 nd R V
24 eleq1 H = 2 nd R H V 2 nd R V
25 23 24 mpbiri H = 2 nd R H V
26 eqid dom dom H = dom dom H
27 26 ismndo1 H V H MndOp H : dom dom H × dom dom H dom dom H x dom dom H y dom dom H z dom dom H x H y H z = x H y H z x dom dom H y dom dom H x H y = y y H x = y
28 1 25 27 mp2b H MndOp H : dom dom H × dom dom H dom dom H x dom dom H y dom dom H z dom dom H x H y H z = x H y H z x dom dom H y dom dom H x H y = y y H x = y
29 22 28 sylibr R RingOps H MndOp