Metamath Proof Explorer


Theorem rngonegcl

Description: A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1 G = 1 st R
ringnegcl.2 X = ran G
ringnegcl.3 N = inv G
Assertion rngonegcl R RingOps A X N A X

Proof

Step Hyp Ref Expression
1 ringnegcl.1 G = 1 st R
2 ringnegcl.2 X = ran G
3 ringnegcl.3 N = inv G
4 1 rngogrpo R RingOps G GrpOp
5 2 3 grpoinvcl G GrpOp A X N A X
6 4 5 sylan R RingOps A X N A X