Metamath Proof Explorer


Theorem rngoneglmul

Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringnegmul.1 G = 1 st R
ringnegmul.2 H = 2 nd R
ringnegmul.3 X = ran G
ringnegmul.4 N = inv G
Assertion rngoneglmul R RingOps A X B X N A H B = N A H B

Proof

Step Hyp Ref Expression
1 ringnegmul.1 G = 1 st R
2 ringnegmul.2 H = 2 nd R
3 ringnegmul.3 X = ran G
4 ringnegmul.4 N = inv G
5 1 rneqi ran G = ran 1 st R
6 3 5 eqtri X = ran 1 st R
7 eqid GId H = GId H
8 6 2 7 rngo1cl R RingOps GId H X
9 1 3 4 rngonegcl R RingOps GId H X N GId H X
10 8 9 mpdan R RingOps N GId H X
11 1 2 3 rngoass R RingOps N GId H X A X B X N GId H H A H B = N GId H H A H B
12 11 3exp2 R RingOps N GId H X A X B X N GId H H A H B = N GId H H A H B
13 10 12 mpd R RingOps A X B X N GId H H A H B = N GId H H A H B
14 13 3imp R RingOps A X B X N GId H H A H B = N GId H H A H B
15 1 2 3 4 7 rngonegmn1l R RingOps A X N A = N GId H H A
16 15 3adant3 R RingOps A X B X N A = N GId H H A
17 16 oveq1d R RingOps A X B X N A H B = N GId H H A H B
18 1 2 3 rngocl R RingOps A X B X A H B X
19 18 3expb R RingOps A X B X A H B X
20 1 2 3 4 7 rngonegmn1l R RingOps A H B X N A H B = N GId H H A H B
21 19 20 syldan R RingOps A X B X N A H B = N GId H H A H B
22 21 3impb R RingOps A X B X N A H B = N GId H H A H B
23 14 17 22 3eqtr4rd R RingOps A X B X N A H B = N A H B