Metamath Proof Explorer


Theorem rngonegmn1r

Description: Negation in a ring is the same as right multiplication by -u 1 . (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringneg.1 G = 1 st R
ringneg.2 H = 2 nd R
ringneg.3 X = ran G
ringneg.4 N = inv G
ringneg.5 U = GId H
Assertion rngonegmn1r R RingOps A X N A = A H N U

Proof

Step Hyp Ref Expression
1 ringneg.1 G = 1 st R
2 ringneg.2 H = 2 nd R
3 ringneg.3 X = ran G
4 ringneg.4 N = inv G
5 ringneg.5 U = GId H
6 1 rneqi ran G = ran 1 st R
7 3 6 eqtri X = ran 1 st R
8 7 2 5 rngo1cl R RingOps U X
9 1 3 4 rngonegcl R RingOps U X N U X
10 8 9 mpdan R RingOps N U X
11 10 adantr R RingOps A X N U X
12 8 adantr R RingOps A X U X
13 11 12 jca R RingOps A X N U X U X
14 1 2 3 rngodi R RingOps A X N U X U X A H N U G U = A H N U G A H U
15 14 3exp2 R RingOps A X N U X U X A H N U G U = A H N U G A H U
16 15 imp43 R RingOps A X N U X U X A H N U G U = A H N U G A H U
17 13 16 mpdan R RingOps A X A H N U G U = A H N U G A H U
18 eqid GId G = GId G
19 1 3 4 18 rngoaddneg2 R RingOps U X N U G U = GId G
20 8 19 mpdan R RingOps N U G U = GId G
21 20 adantr R RingOps A X N U G U = GId G
22 21 oveq2d R RingOps A X A H N U G U = A H GId G
23 18 3 1 2 rngorz R RingOps A X A H GId G = GId G
24 22 23 eqtrd R RingOps A X A H N U G U = GId G
25 2 7 5 rngoridm R RingOps A X A H U = A
26 25 oveq2d R RingOps A X A H N U G A H U = A H N U G A
27 17 24 26 3eqtr3rd R RingOps A X A H N U G A = GId G
28 1 2 3 rngocl R RingOps A X N U X A H N U X
29 11 28 mpd3an3 R RingOps A X A H N U X
30 1 rngogrpo R RingOps G GrpOp
31 3 18 4 grpoinvid2 G GrpOp A X A H N U X N A = A H N U A H N U G A = GId G
32 30 31 syl3an1 R RingOps A X A H N U X N A = A H N U A H N U G A = GId G
33 29 32 mpd3an3 R RingOps A X N A = A H N U A H N U G A = GId G
34 27 33 mpbird R RingOps A X N A = A H N U