Metamath Proof Explorer


Theorem rngonegrmul

Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringnegmul.1 G = 1 st R
ringnegmul.2 H = 2 nd R
ringnegmul.3 X = ran G
ringnegmul.4 N = inv G
Assertion rngonegrmul R RingOps A X B X N A H B = A H N B

Proof

Step Hyp Ref Expression
1 ringnegmul.1 G = 1 st R
2 ringnegmul.2 H = 2 nd R
3 ringnegmul.3 X = ran G
4 ringnegmul.4 N = inv G
5 1 rneqi ran G = ran 1 st R
6 3 5 eqtri X = ran 1 st R
7 eqid GId H = GId H
8 6 2 7 rngo1cl R RingOps GId H X
9 1 3 4 rngonegcl R RingOps GId H X N GId H X
10 8 9 mpdan R RingOps N GId H X
11 1 2 3 rngoass R RingOps A X B X N GId H X A H B H N GId H = A H B H N GId H
12 11 3exp2 R RingOps A X B X N GId H X A H B H N GId H = A H B H N GId H
13 12 com24 R RingOps N GId H X B X A X A H B H N GId H = A H B H N GId H
14 13 com34 R RingOps N GId H X A X B X A H B H N GId H = A H B H N GId H
15 10 14 mpd R RingOps A X B X A H B H N GId H = A H B H N GId H
16 15 3imp R RingOps A X B X A H B H N GId H = A H B H N GId H
17 1 2 3 rngocl R RingOps A X B X A H B X
18 17 3expb R RingOps A X B X A H B X
19 1 2 3 4 7 rngonegmn1r R RingOps A H B X N A H B = A H B H N GId H
20 18 19 syldan R RingOps A X B X N A H B = A H B H N GId H
21 20 3impb R RingOps A X B X N A H B = A H B H N GId H
22 1 2 3 4 7 rngonegmn1r R RingOps B X N B = B H N GId H
23 22 3adant2 R RingOps A X B X N B = B H N GId H
24 23 oveq2d R RingOps A X B X A H N B = A H B H N GId H
25 16 21 24 3eqtr4d R RingOps A X B X N A H B = A H N B