Metamath Proof Explorer


Theorem rngorz

Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009) (New usage is discouraged.)

Ref Expression
Hypotheses ringlz.1 Z = GId G
ringlz.2 X = ran G
ringlz.3 G = 1 st R
ringlz.4 H = 2 nd R
Assertion rngorz R RingOps A X A H Z = Z

Proof

Step Hyp Ref Expression
1 ringlz.1 Z = GId G
2 ringlz.2 X = ran G
3 ringlz.3 G = 1 st R
4 ringlz.4 H = 2 nd R
5 3 rngogrpo R RingOps G GrpOp
6 2 1 grpoidcl G GrpOp Z X
7 2 1 grpolid G GrpOp Z X Z G Z = Z
8 5 6 7 syl2anc2 R RingOps Z G Z = Z
9 8 adantr R RingOps A X Z G Z = Z
10 9 oveq2d R RingOps A X A H Z G Z = A H Z
11 simpr R RingOps A X A X
12 3 2 1 rngo0cl R RingOps Z X
13 12 adantr R RingOps A X Z X
14 11 13 13 3jca R RingOps A X A X Z X Z X
15 3 4 2 rngodi R RingOps A X Z X Z X A H Z G Z = A H Z G A H Z
16 14 15 syldan R RingOps A X A H Z G Z = A H Z G A H Z
17 5 adantr R RingOps A X G GrpOp
18 3 4 2 rngocl R RingOps A X Z X A H Z X
19 13 18 mpd3an3 R RingOps A X A H Z X
20 2 1 grpolid G GrpOp A H Z X Z G A H Z = A H Z
21 20 eqcomd G GrpOp A H Z X A H Z = Z G A H Z
22 17 19 21 syl2anc R RingOps A X A H Z = Z G A H Z
23 10 16 22 3eqtr3d R RingOps A X A H Z G A H Z = Z G A H Z
24 2 grporcan G GrpOp A H Z X Z X A H Z X A H Z G A H Z = Z G A H Z A H Z = Z
25 17 19 13 19 24 syl13anc R RingOps A X A H Z G A H Z = Z G A H Z A H Z = Z
26 23 25 mpbid R RingOps A X A H Z = Z