Metamath Proof Explorer


Theorem rngosm

Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G = 1 st R
ringi.2 H = 2 nd R
ringi.3 X = ran G
Assertion rngosm R RingOps H : X × X X

Proof

Step Hyp Ref Expression
1 ringi.1 G = 1 st R
2 ringi.2 H = 2 nd R
3 ringi.3 X = ran G
4 1 2 3 rngoi R RingOps G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
5 4 simpld R RingOps G AbelOp H : X × X X
6 5 simprd R RingOps H : X × X X