Metamath Proof Explorer


Theorem rngosub

Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1 G = 1 st R
ringnegcl.2 X = ran G
ringnegcl.3 N = inv G
ringsub.4 D = / g G
Assertion rngosub R RingOps A X B X A D B = A G N B

Proof

Step Hyp Ref Expression
1 ringnegcl.1 G = 1 st R
2 ringnegcl.2 X = ran G
3 ringnegcl.3 N = inv G
4 ringsub.4 D = / g G
5 1 rngogrpo R RingOps G GrpOp
6 2 3 4 grpodivval G GrpOp A X B X A D B = A G N B
7 5 6 syl3an1 R RingOps A X B X A D B = A G N B