Metamath Proof Explorer


Theorem rngosubdi

Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringsubdi.1 G=1stR
ringsubdi.2 H=2ndR
ringsubdi.3 X=ranG
ringsubdi.4 D=/gG
Assertion rngosubdi RRingOpsAXBXCXAHBDC=AHBDAHC

Proof

Step Hyp Ref Expression
1 ringsubdi.1 G=1stR
2 ringsubdi.2 H=2ndR
3 ringsubdi.3 X=ranG
4 ringsubdi.4 D=/gG
5 eqid invG=invG
6 1 3 5 4 rngosub RRingOpsBXCXBDC=BGinvGC
7 6 3adant3r1 RRingOpsAXBXCXBDC=BGinvGC
8 7 oveq2d RRingOpsAXBXCXAHBDC=AHBGinvGC
9 1 2 3 rngocl RRingOpsAXBXAHBX
10 9 3adant3r3 RRingOpsAXBXCXAHBX
11 1 2 3 rngocl RRingOpsAXCXAHCX
12 11 3adant3r2 RRingOpsAXBXCXAHCX
13 10 12 jca RRingOpsAXBXCXAHBXAHCX
14 1 3 5 4 rngosub RRingOpsAHBXAHCXAHBDAHC=AHBGinvGAHC
15 14 3expb RRingOpsAHBXAHCXAHBDAHC=AHBGinvGAHC
16 13 15 syldan RRingOpsAXBXCXAHBDAHC=AHBGinvGAHC
17 idd RRingOpsAXAX
18 idd RRingOpsBXBX
19 1 3 5 rngonegcl RRingOpsCXinvGCX
20 19 ex RRingOpsCXinvGCX
21 17 18 20 3anim123d RRingOpsAXBXCXAXBXinvGCX
22 21 imp RRingOpsAXBXCXAXBXinvGCX
23 1 2 3 rngodi RRingOpsAXBXinvGCXAHBGinvGC=AHBGAHinvGC
24 22 23 syldan RRingOpsAXBXCXAHBGinvGC=AHBGAHinvGC
25 1 2 3 5 rngonegrmul RRingOpsAXCXinvGAHC=AHinvGC
26 25 3adant3r2 RRingOpsAXBXCXinvGAHC=AHinvGC
27 26 oveq2d RRingOpsAXBXCXAHBGinvGAHC=AHBGAHinvGC
28 24 27 eqtr4d RRingOpsAXBXCXAHBGinvGC=AHBGinvGAHC
29 16 28 eqtr4d RRingOpsAXBXCXAHBDAHC=AHBGinvGC
30 8 29 eqtr4d RRingOpsAXBXCXAHBDC=AHBDAHC