Metamath Proof Explorer


Theorem rngosubdir

Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringsubdi.1 G = 1 st R
ringsubdi.2 H = 2 nd R
ringsubdi.3 X = ran G
ringsubdi.4 D = / g G
Assertion rngosubdir R RingOps A X B X C X A D B H C = A H C D B H C

Proof

Step Hyp Ref Expression
1 ringsubdi.1 G = 1 st R
2 ringsubdi.2 H = 2 nd R
3 ringsubdi.3 X = ran G
4 ringsubdi.4 D = / g G
5 eqid inv G = inv G
6 1 3 5 4 rngosub R RingOps A X B X A D B = A G inv G B
7 6 3adant3r3 R RingOps A X B X C X A D B = A G inv G B
8 7 oveq1d R RingOps A X B X C X A D B H C = A G inv G B H C
9 1 2 3 rngocl R RingOps A X C X A H C X
10 9 3adant3r2 R RingOps A X B X C X A H C X
11 1 2 3 rngocl R RingOps B X C X B H C X
12 11 3adant3r1 R RingOps A X B X C X B H C X
13 10 12 jca R RingOps A X B X C X A H C X B H C X
14 1 3 5 4 rngosub R RingOps A H C X B H C X A H C D B H C = A H C G inv G B H C
15 14 3expb R RingOps A H C X B H C X A H C D B H C = A H C G inv G B H C
16 13 15 syldan R RingOps A X B X C X A H C D B H C = A H C G inv G B H C
17 idd R RingOps A X A X
18 1 3 5 rngonegcl R RingOps B X inv G B X
19 18 ex R RingOps B X inv G B X
20 idd R RingOps C X C X
21 17 19 20 3anim123d R RingOps A X B X C X A X inv G B X C X
22 21 imp R RingOps A X B X C X A X inv G B X C X
23 1 2 3 rngodir R RingOps A X inv G B X C X A G inv G B H C = A H C G inv G B H C
24 22 23 syldan R RingOps A X B X C X A G inv G B H C = A H C G inv G B H C
25 1 2 3 5 rngoneglmul R RingOps B X C X inv G B H C = inv G B H C
26 25 3adant3r1 R RingOps A X B X C X inv G B H C = inv G B H C
27 26 oveq2d R RingOps A X B X C X A H C G inv G B H C = A H C G inv G B H C
28 24 27 eqtr4d R RingOps A X B X C X A G inv G B H C = A H C G inv G B H C
29 16 28 eqtr4d R RingOps A X B X C X A H C D B H C = A G inv G B H C
30 8 29 eqtr4d R RingOps A X B X C X A D B H C = A H C D B H C