Metamath Proof Explorer


Theorem rngoueqz

Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses uznzr.1 G = 1 st R
uznzr.2 H = 2 nd R
uznzr.3 Z = GId G
uznzr.4 U = GId H
uznzr.5 X = ran G
Assertion rngoueqz R RingOps X 1 𝑜 U = Z

Proof

Step Hyp Ref Expression
1 uznzr.1 G = 1 st R
2 uznzr.2 H = 2 nd R
3 uznzr.3 Z = GId G
4 uznzr.4 U = GId H
5 uznzr.5 X = ran G
6 1 5 3 rngo0cl R RingOps Z X
7 en1eqsn Z X X 1 𝑜 X = Z
8 1 rneqi ran G = ran 1 st R
9 8 2 4 rngo1cl R RingOps U ran G
10 eleq2 X = Z U X U Z
11 10 biimpd X = Z U X U Z
12 elsni U Z U = Z
13 11 12 syl6com U X X = Z U = Z
14 5 eqcomi ran G = X
15 13 14 eleq2s U ran G X = Z U = Z
16 9 15 syl R RingOps X = Z U = Z
17 7 16 syl5com Z X X 1 𝑜 R RingOps U = Z
18 17 ex Z X X 1 𝑜 R RingOps U = Z
19 18 com23 Z X R RingOps X 1 𝑜 U = Z
20 6 19 mpcom R RingOps X 1 𝑜 U = Z
21 1 5 rngone0 R RingOps X
22 oveq2 U = Z x H U = x H Z
23 22 ralrimivw U = Z x X x H U = x H Z
24 3 5 1 2 rngorz R RingOps x X x H Z = Z
25 24 ralrimiva R RingOps x X x H Z = Z
26 5 8 eqtri X = ran 1 st R
27 2 26 4 rngoridm R RingOps x X x H U = x
28 27 ralrimiva R RingOps x X x H U = x
29 r19.26 x X x H U = x x H U = x H Z x X x H U = x x X x H U = x H Z
30 r19.26 x X x H U = x x H U = x H Z x H Z = Z x X x H U = x x H U = x H Z x X x H Z = Z
31 eqtr x = x H U x H U = x H Z x = x H Z
32 eqtr x = x H Z x H Z = Z x = Z
33 32 ex x = x H Z x H Z = Z x = Z
34 31 33 syl x = x H U x H U = x H Z x H Z = Z x = Z
35 34 ex x = x H U x H U = x H Z x H Z = Z x = Z
36 35 eqcoms x H U = x x H U = x H Z x H Z = Z x = Z
37 36 imp31 x H U = x x H U = x H Z x H Z = Z x = Z
38 37 ralimi x X x H U = x x H U = x H Z x H Z = Z x X x = Z
39 eqsn X X = Z x X x = Z
40 ensn1g Z X Z 1 𝑜
41 6 40 syl R RingOps Z 1 𝑜
42 breq1 X = Z X 1 𝑜 Z 1 𝑜
43 41 42 syl5ibr X = Z R RingOps X 1 𝑜
44 39 43 syl6bir X x X x = Z R RingOps X 1 𝑜
45 44 com3l x X x = Z R RingOps X X 1 𝑜
46 38 45 syl x X x H U = x x H U = x H Z x H Z = Z R RingOps X X 1 𝑜
47 30 46 sylbir x X x H U = x x H U = x H Z x X x H Z = Z R RingOps X X 1 𝑜
48 47 ex x X x H U = x x H U = x H Z x X x H Z = Z R RingOps X X 1 𝑜
49 29 48 sylbir x X x H U = x x X x H U = x H Z x X x H Z = Z R RingOps X X 1 𝑜
50 49 ex x X x H U = x x X x H U = x H Z x X x H Z = Z R RingOps X X 1 𝑜
51 50 com24 x X x H U = x R RingOps x X x H Z = Z x X x H U = x H Z X X 1 𝑜
52 28 51 mpcom R RingOps x X x H Z = Z x X x H U = x H Z X X 1 𝑜
53 25 52 mpd R RingOps x X x H U = x H Z X X 1 𝑜
54 23 53 syl5com U = Z R RingOps X X 1 𝑜
55 54 com13 X R RingOps U = Z X 1 𝑜
56 21 55 mpcom R RingOps U = Z X 1 𝑜
57 20 56 impbid R RingOps X 1 𝑜 U = Z