Metamath Proof Explorer


Theorem rngpropd

Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypotheses rngpropd.1 φ B = Base K
rngpropd.2 φ B = Base L
rngpropd.3 φ x B y B x + K y = x + L y
rngpropd.4 φ x B y B x K y = x L y
Assertion rngpropd φ K Rng L Rng

Proof

Step Hyp Ref Expression
1 rngpropd.1 φ B = Base K
2 rngpropd.2 φ B = Base L
3 rngpropd.3 φ x B y B x + K y = x + L y
4 rngpropd.4 φ x B y B x K y = x L y
5 simpll φ K Abel mulGrp K Smgrp u B v B w B φ
6 simprll φ K Abel mulGrp K Smgrp u B v B w B u B
7 simplrl φ K Abel mulGrp K Smgrp u B v B w B K Abel
8 simprlr φ K Abel mulGrp K Smgrp u B v B w B v B
9 1 ad2antrr φ K Abel mulGrp K Smgrp u B v B w B B = Base K
10 8 9 eleqtrd φ K Abel mulGrp K Smgrp u B v B w B v Base K
11 simprr φ K Abel mulGrp K Smgrp u B v B w B w B
12 11 9 eleqtrd φ K Abel mulGrp K Smgrp u B v B w B w Base K
13 ablgrp K Abel K Grp
14 eqid Base K = Base K
15 eqid + K = + K
16 14 15 grpcl K Grp v Base K w Base K v + K w Base K
17 13 16 syl3an1 K Abel v Base K w Base K v + K w Base K
18 7 10 12 17 syl3anc φ K Abel mulGrp K Smgrp u B v B w B v + K w Base K
19 18 9 eleqtrrd φ K Abel mulGrp K Smgrp u B v B w B v + K w B
20 4 oveqrspc2v φ u B v + K w B u K v + K w = u L v + K w
21 5 6 19 20 syl12anc φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u L v + K w
22 3 oveqrspc2v φ v B w B v + K w = v + L w
23 5 8 11 22 syl12anc φ K Abel mulGrp K Smgrp u B v B w B v + K w = v + L w
24 23 oveq2d φ K Abel mulGrp K Smgrp u B v B w B u L v + K w = u L v + L w
25 21 24 eqtrd φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u L v + L w
26 simplrr φ K Abel mulGrp K Smgrp u B v B w B mulGrp K Smgrp
27 6 9 eleqtrd φ K Abel mulGrp K Smgrp u B v B w B u Base K
28 eqid mulGrp K = mulGrp K
29 28 14 mgpbas Base K = Base mulGrp K
30 eqid K = K
31 28 30 mgpplusg K = + mulGrp K
32 29 31 sgrpcl mulGrp K Smgrp u Base K v Base K u K v Base K
33 26 27 10 32 syl3anc φ K Abel mulGrp K Smgrp u B v B w B u K v Base K
34 33 9 eleqtrrd φ K Abel mulGrp K Smgrp u B v B w B u K v B
35 29 31 sgrpcl mulGrp K Smgrp u Base K w Base K u K w Base K
36 26 27 12 35 syl3anc φ K Abel mulGrp K Smgrp u B v B w B u K w Base K
37 36 9 eleqtrrd φ K Abel mulGrp K Smgrp u B v B w B u K w B
38 3 oveqrspc2v φ u K v B u K w B u K v + K u K w = u K v + L u K w
39 5 34 37 38 syl12anc φ K Abel mulGrp K Smgrp u B v B w B u K v + K u K w = u K v + L u K w
40 4 oveqrspc2v φ u B v B u K v = u L v
41 40 ad2ant2r φ K Abel mulGrp K Smgrp u B v B w B u K v = u L v
42 4 oveqrspc2v φ u B w B u K w = u L w
43 5 6 11 42 syl12anc φ K Abel mulGrp K Smgrp u B v B w B u K w = u L w
44 41 43 oveq12d φ K Abel mulGrp K Smgrp u B v B w B u K v + L u K w = u L v + L u L w
45 39 44 eqtrd φ K Abel mulGrp K Smgrp u B v B w B u K v + K u K w = u L v + L u L w
46 25 45 eqeq12d φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u K v + K u K w u L v + L w = u L v + L u L w
47 14 15 grpcl K Grp u Base K v Base K u + K v Base K
48 13 47 syl3an1 K Abel u Base K v Base K u + K v Base K
49 7 27 10 48 syl3anc φ K Abel mulGrp K Smgrp u B v B w B u + K v Base K
50 49 9 eleqtrrd φ K Abel mulGrp K Smgrp u B v B w B u + K v B
51 4 oveqrspc2v φ u + K v B w B u + K v K w = u + K v L w
52 5 50 11 51 syl12anc φ K Abel mulGrp K Smgrp u B v B w B u + K v K w = u + K v L w
53 3 oveqrspc2v φ u B v B u + K v = u + L v
54 53 ad2ant2r φ K Abel mulGrp K Smgrp u B v B w B u + K v = u + L v
55 54 oveq1d φ K Abel mulGrp K Smgrp u B v B w B u + K v L w = u + L v L w
56 52 55 eqtrd φ K Abel mulGrp K Smgrp u B v B w B u + K v K w = u + L v L w
57 29 31 sgrpcl mulGrp K Smgrp v Base K w Base K v K w Base K
58 26 10 12 57 syl3anc φ K Abel mulGrp K Smgrp u B v B w B v K w Base K
59 58 9 eleqtrrd φ K Abel mulGrp K Smgrp u B v B w B v K w B
60 3 oveqrspc2v φ u K w B v K w B u K w + K v K w = u K w + L v K w
61 5 37 59 60 syl12anc φ K Abel mulGrp K Smgrp u B v B w B u K w + K v K w = u K w + L v K w
62 4 oveqrspc2v φ v B w B v K w = v L w
63 5 8 11 62 syl12anc φ K Abel mulGrp K Smgrp u B v B w B v K w = v L w
64 43 63 oveq12d φ K Abel mulGrp K Smgrp u B v B w B u K w + L v K w = u L w + L v L w
65 61 64 eqtrd φ K Abel mulGrp K Smgrp u B v B w B u K w + K v K w = u L w + L v L w
66 56 65 eqeq12d φ K Abel mulGrp K Smgrp u B v B w B u + K v K w = u K w + K v K w u + L v L w = u L w + L v L w
67 46 66 anbi12d φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
68 67 anassrs φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
69 68 ralbidva φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
70 69 2ralbidva φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u B v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
71 1 adantr φ K Abel mulGrp K Smgrp B = Base K
72 71 raleqdv φ K Abel mulGrp K Smgrp w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
73 71 72 raleqbidv φ K Abel mulGrp K Smgrp v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
74 71 73 raleqbidv φ K Abel mulGrp K Smgrp u B v B w B u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
75 2 adantr φ K Abel mulGrp K Smgrp B = Base L
76 75 raleqdv φ K Abel mulGrp K Smgrp w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
77 75 76 raleqbidv φ K Abel mulGrp K Smgrp v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
78 75 77 raleqbidv φ K Abel mulGrp K Smgrp u B v B w B u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
79 70 74 78 3bitr3d φ K Abel mulGrp K Smgrp u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
80 79 pm5.32da φ K Abel mulGrp K Smgrp u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Abel mulGrp K Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
81 df-3an K Abel mulGrp K Smgrp u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Abel mulGrp K Smgrp u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
82 df-3an K Abel mulGrp K Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w K Abel mulGrp K Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
83 80 81 82 3bitr4g φ K Abel mulGrp K Smgrp u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w K Abel mulGrp K Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
84 1 2 3 ablpropd φ K Abel L Abel
85 fvexd φ mulGrp K V
86 fvexd φ mulGrp L V
87 29 a1i φ Base K = Base mulGrp K
88 eqid mulGrp L = mulGrp L
89 eqid Base L = Base L
90 88 89 mgpbas Base L = Base mulGrp L
91 2 90 eqtrdi φ B = Base mulGrp L
92 1 91 eqtr3d φ Base K = Base mulGrp L
93 4 ex φ x B y B x K y = x L y
94 1 eleq2d φ x B x Base K
95 1 eleq2d φ y B y Base K
96 94 95 anbi12d φ x B y B x Base K y Base K
97 96 bicomd φ x Base K y Base K x B y B
98 31 a1i φ K = + mulGrp K
99 98 eqcomd φ + mulGrp K = K
100 99 oveqd φ x + mulGrp K y = x K y
101 eqid L = L
102 88 101 mgpplusg L = + mulGrp L
103 102 a1i φ L = + mulGrp L
104 103 eqcomd φ + mulGrp L = L
105 104 oveqd φ x + mulGrp L y = x L y
106 100 105 eqeq12d φ x + mulGrp K y = x + mulGrp L y x K y = x L y
107 93 97 106 3imtr4d φ x Base K y Base K x + mulGrp K y = x + mulGrp L y
108 107 imp φ x Base K y Base K x + mulGrp K y = x + mulGrp L y
109 85 86 87 92 108 sgrppropd φ mulGrp K Smgrp mulGrp L Smgrp
110 84 109 3anbi12d φ K Abel mulGrp K Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w L Abel mulGrp L Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
111 83 110 bitrd φ K Abel mulGrp K Smgrp u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w L Abel mulGrp L Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
112 14 28 15 30 isrng K Rng K Abel mulGrp K Smgrp u Base K v Base K w Base K u K v + K w = u K v + K u K w u + K v K w = u K w + K v K w
113 eqid + L = + L
114 89 88 113 101 isrng L Rng L Abel mulGrp L Smgrp u Base L v Base L w Base L u L v + L w = u L v + L u L w u + L v L w = u L w + L v L w
115 111 112 114 3bitr4g φ K Rng L Rng