Metamath Proof Explorer


Theorem rngridlmcl

Description: A right ideal (which is a left ideal over the opposite ring) containing the zero element is closed under right-multiplication by elements of the full non-unital ring. (Contributed by AV, 19-Feb-2025)

Ref Expression
Hypotheses rnglidlmcl.z 0 ˙ = 0 R
rnglidlmcl.b B = Base R
rnglidlmcl.t · ˙ = R
rngridlmcl.u U = LIdeal opp r R
Assertion rngridlmcl R Rng I U 0 ˙ I X B Y I Y · ˙ X I

Proof

Step Hyp Ref Expression
1 rnglidlmcl.z 0 ˙ = 0 R
2 rnglidlmcl.b B = Base R
3 rnglidlmcl.t · ˙ = R
4 rngridlmcl.u U = LIdeal opp r R
5 eqid opp r R = opp r R
6 eqid opp r R = opp r R
7 2 3 5 6 opprmul X opp r R Y = Y · ˙ X
8 5 opprrng R Rng opp r R Rng
9 id I U I U
10 1 eleq1i 0 ˙ I 0 R I
11 10 biimpi 0 ˙ I 0 R I
12 eqid 0 R = 0 R
13 5 12 oppr0 0 R = 0 opp r R
14 5 2 opprbas B = Base opp r R
15 13 14 6 4 rnglidlmcl opp r R Rng I U 0 R I X B Y I X opp r R Y I
16 8 9 11 15 syl3anl R Rng I U 0 ˙ I X B Y I X opp r R Y I
17 7 16 eqeltrrid R Rng I U 0 ˙ I X B Y I Y · ˙ X I