Metamath Proof Explorer


Theorem rnin

Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of Suppes p. 60. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion rnin ran A B ran A ran B

Proof

Step Hyp Ref Expression
1 cnvin A B -1 = A -1 B -1
2 1 dmeqi dom A B -1 = dom A -1 B -1
3 dmin dom A -1 B -1 dom A -1 dom B -1
4 2 3 eqsstri dom A B -1 dom A -1 dom B -1
5 df-rn ran A B = dom A B -1
6 df-rn ran A = dom A -1
7 df-rn ran B = dom B -1
8 6 7 ineq12i ran A ran B = dom A -1 dom B -1
9 4 5 8 3sstr4i ran A B ran A ran B