Metamath Proof Explorer


Theorem rniun

Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion rniun ran x A B = x A ran B

Proof

Step Hyp Ref Expression
1 rexcom4 x A y y z B y x A y z B
2 vex z V
3 2 elrn2 z ran B y y z B
4 3 rexbii x A z ran B x A y y z B
5 eliun y z x A B x A y z B
6 5 exbii y y z x A B y x A y z B
7 1 4 6 3bitr4ri y y z x A B x A z ran B
8 2 elrn2 z ran x A B y y z x A B
9 eliun z x A ran B x A z ran B
10 7 8 9 3bitr4i z ran x A B z x A ran B
11 10 eqriv ran x A B = x A ran B