Metamath Proof Explorer


Theorem rnmptbd2lem

Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbd2lem.x x φ
rnmptbd2lem.b φ x A B V
Assertion rnmptbd2lem φ y x A y B y z ran x A B y z

Proof

Step Hyp Ref Expression
1 rnmptbd2lem.x x φ
2 rnmptbd2lem.b φ x A B V
3 eqid x A B = x A B
4 3 elrnmpt z V z ran x A B x A z = B
5 4 elv z ran x A B x A z = B
6 nfra1 x x A y B
7 nfv x y z
8 rspa x A y B x A y B
9 simpl y B z = B y B
10 id z = B z = B
11 10 eqcomd z = B B = z
12 11 adantl y B z = B B = z
13 9 12 breqtrd y B z = B y z
14 13 ex y B z = B y z
15 8 14 syl x A y B x A z = B y z
16 15 ex x A y B x A z = B y z
17 6 7 16 rexlimd x A y B x A z = B y z
18 17 imp x A y B x A z = B y z
19 18 adantll φ x A y B x A z = B y z
20 5 19 sylan2b φ x A y B z ran x A B y z
21 20 ralrimiva φ x A y B z ran x A B y z
22 21 ex φ x A y B z ran x A B y z
23 22 reximdv φ y x A y B y z ran x A B y z
24 nfmpt1 _ x x A B
25 24 nfrn _ x ran x A B
26 25 7 nfralw x z ran x A B y z
27 1 26 nfan x φ z ran x A B y z
28 breq2 z = B y z y B
29 simplr φ z ran x A B y z x A z ran x A B y z
30 simpr φ z ran x A B y z x A x A
31 2 adantlr φ z ran x A B y z x A B V
32 3 30 31 elrnmpt1d φ z ran x A B y z x A B ran x A B
33 28 29 32 rspcdva φ z ran x A B y z x A y B
34 27 33 ralrimia φ z ran x A B y z x A y B
35 34 ex φ z ran x A B y z x A y B
36 35 reximdv φ y z ran x A B y z y x A y B
37 23 36 impbid φ y x A y B y z ran x A B y z