Metamath Proof Explorer


Theorem rnmptbdd

Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbdd.x xφ
rnmptbdd.b φyxABy
Assertion rnmptbdd φyzranxABzy

Proof

Step Hyp Ref Expression
1 rnmptbdd.x xφ
2 rnmptbdd.b φyxABy
3 breq2 y=vByBv
4 3 ralbidv y=vxAByxABv
5 4 cbvrexvw yxAByvxABv
6 2 5 sylib φvxABv
7 1 6 rnmptbddlem φvwranxABwv
8 breq2 v=ywvwy
9 8 ralbidv v=ywranxABwvwranxABwy
10 breq1 w=zwyzy
11 10 cbvralvw wranxABwyzranxABzy
12 9 11 bitrdi v=ywranxABwvzranxABzy
13 12 cbvrexvw vwranxABwvyzranxABzy
14 7 13 sylib φyzranxABzy