Metamath Proof Explorer


Theorem rnmptbdd

Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbdd.x x φ
rnmptbdd.b φ y x A B y
Assertion rnmptbdd φ y z ran x A B z y

Proof

Step Hyp Ref Expression
1 rnmptbdd.x x φ
2 rnmptbdd.b φ y x A B y
3 breq2 y = v B y B v
4 3 ralbidv y = v x A B y x A B v
5 4 cbvrexvw y x A B y v x A B v
6 2 5 sylib φ v x A B v
7 1 6 rnmptbddlem φ v w ran x A B w v
8 breq2 v = y w v w y
9 8 ralbidv v = y w ran x A B w v w ran x A B w y
10 breq1 w = z w y z y
11 10 cbvralvw w ran x A B w y z ran x A B z y
12 9 11 bitrdi v = y w ran x A B w v z ran x A B z y
13 12 cbvrexvw v w ran x A B w v y z ran x A B z y
14 7 13 sylib φ y z ran x A B z y