Metamath Proof Explorer


Theorem rnmptfi

Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis rnmptfi.a A = x B C
Assertion rnmptfi B Fin ran A Fin

Proof

Step Hyp Ref Expression
1 rnmptfi.a A = x B C
2 mptfi B Fin x B C Fin
3 1 2 eqeltrid B Fin A Fin
4 rnfi A Fin ran A Fin
5 3 4 syl B Fin ran A Fin