Metamath Proof Explorer


Theorem rnmptn0

Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rnmpt0f.1 x φ
rnmpt0f.2 φ x A B V
rnmpt0f.3 F = x A B
rnmptn0.a φ A
Assertion rnmptn0 φ ran F

Proof

Step Hyp Ref Expression
1 rnmpt0f.1 x φ
2 rnmpt0f.2 φ x A B V
3 rnmpt0f.3 F = x A B
4 rnmptn0.a φ A
5 4 neneqd φ ¬ A =
6 1 2 3 rnmpt0f φ ran F = A =
7 5 6 mtbird φ ¬ ran F =
8 7 neqned φ ran F