Metamath Proof Explorer


Theorem rnmptpr

Description: Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rnmptpr.a φ A V
rnmptpr.b φ B W
rnmptpr.f F = x A B C
rnmptpr.d x = A C = D
rnmptpr.e x = B C = E
Assertion rnmptpr φ ran F = D E

Proof

Step Hyp Ref Expression
1 rnmptpr.a φ A V
2 rnmptpr.b φ B W
3 rnmptpr.f F = x A B C
4 rnmptpr.d x = A C = D
5 rnmptpr.e x = B C = E
6 4 eqeq2d x = A y = C y = D
7 5 eqeq2d x = B y = C y = E
8 6 7 rexprg A V B W x A B y = C y = D y = E
9 1 2 8 syl2anc φ x A B y = C y = D y = E
10 3 elrnmpt y V y ran F x A B y = C
11 10 elv y ran F x A B y = C
12 vex y V
13 12 elpr y D E y = D y = E
14 9 11 13 3bitr4g φ y ran F y D E
15 14 eqrdv φ ran F = D E