Metamath Proof Explorer


Theorem rnmptssbi

Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses rnmptssbi.1 xφ
rnmptssbi.2 F=xAB
rnmptssbi.3 φxABV
Assertion rnmptssbi φranFCxABC

Proof

Step Hyp Ref Expression
1 rnmptssbi.1 xφ
2 rnmptssbi.2 F=xAB
3 rnmptssbi.3 φxABV
4 nfmpt1 _xxAB
5 2 4 nfcxfr _xF
6 5 nfrn _xranF
7 nfcv _xC
8 6 7 nfss xranFC
9 1 8 nfan xφranFC
10 simplr φranFCxAranFC
11 simpr φranFCxAxA
12 3 adantlr φranFCxABV
13 2 11 12 elrnmpt1d φranFCxABranF
14 10 13 sseldd φranFCxABC
15 9 14 ralrimia φranFCxABC
16 2 rnmptss xABCranFC
17 16 adantl φxABCranFC
18 15 17 impbida φranFCxABC