Metamath Proof Explorer


Theorem rnmptssff

Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses rnmptssff.1 _ x A
rnmptssff.2 _ x C
rnmptssff.3 F = x A B
Assertion rnmptssff x A B C ran F C

Proof

Step Hyp Ref Expression
1 rnmptssff.1 _ x A
2 rnmptssff.2 _ x C
3 rnmptssff.3 F = x A B
4 1 2 3 fmptff x A B C F : A C
5 frn F : A C ran F C
6 4 5 sylbi x A B C ran F C