Metamath Proof Explorer


Theorem rnmptssrn

Description: Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rnmptssrn.b φ x A B V
rnmptssrn.y φ x A y C B = D
Assertion rnmptssrn φ ran x A B ran y C D

Proof

Step Hyp Ref Expression
1 rnmptssrn.b φ x A B V
2 rnmptssrn.y φ x A y C B = D
3 eqid y C D = y C D
4 3 2 1 elrnmptd φ x A B ran y C D
5 4 ralrimiva φ x A B ran y C D
6 eqid x A B = x A B
7 6 rnmptss x A B ran y C D ran x A B ran y C D
8 5 7 syl φ ran x A B ran y C D