Database
BASIC ALGEBRAIC STRUCTURES
Rings
Subrings
Subrings of unital rings
rnrhmsubrg
Next ⟩
cntzsubr
Metamath Proof Explorer
Ascii
Unicode
Theorem
rnrhmsubrg
Description:
The range of a ring homomorphism is a subring.
(Contributed by
SN
, 18-Nov-2023)
Ref
Expression
Assertion
rnrhmsubrg
⊢
F
∈
M
RingHom
N
→
ran
⁡
F
∈
SubRing
⁡
N
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
M
=
Base
M
2
eqid
⊢
Base
N
=
Base
N
3
1
2
rhmf
⊢
F
∈
M
RingHom
N
→
F
:
Base
M
⟶
Base
N
4
3
ffnd
⊢
F
∈
M
RingHom
N
→
F
Fn
Base
M
5
fnima
⊢
F
Fn
Base
M
→
F
Base
M
=
ran
⁡
F
6
4
5
syl
⊢
F
∈
M
RingHom
N
→
F
Base
M
=
ran
⁡
F
7
rhmrcl1
⊢
F
∈
M
RingHom
N
→
M
∈
Ring
8
1
subrgid
⊢
M
∈
Ring
→
Base
M
∈
SubRing
⁡
M
9
7
8
syl
⊢
F
∈
M
RingHom
N
→
Base
M
∈
SubRing
⁡
M
10
rhmima
⊢
F
∈
M
RingHom
N
∧
Base
M
∈
SubRing
⁡
M
→
F
Base
M
∈
SubRing
⁡
N
11
9
10
mpdan
⊢
F
∈
M
RingHom
N
→
F
Base
M
∈
SubRing
⁡
N
12
6
11
eqeltrrd
⊢
F
∈
M
RingHom
N
→
ran
⁡
F
∈
SubRing
⁡
N