Metamath Proof Explorer


Theorem rnrhmsubrg

Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023)

Ref Expression
Assertion rnrhmsubrg F M RingHom N ran F SubRing N

Proof

Step Hyp Ref Expression
1 df-ima F Base M = ran F Base M
2 eqid Base M = Base M
3 eqid Base N = Base N
4 2 3 rhmf F M RingHom N F : Base M Base N
5 4 ffnd F M RingHom N F Fn Base M
6 fnresdm F Fn Base M F Base M = F
7 5 6 syl F M RingHom N F Base M = F
8 7 rneqd F M RingHom N ran F Base M = ran F
9 1 8 eqtr2id F M RingHom N ran F = F Base M
10 rhmrcl1 F M RingHom N M Ring
11 2 subrgid M Ring Base M SubRing M
12 10 11 syl F M RingHom N Base M SubRing M
13 rhmima F M RingHom N Base M SubRing M F Base M SubRing N
14 12 13 mpdan F M RingHom N F Base M SubRing N
15 9 14 eqeltrd F M RingHom N ran F SubRing N