Metamath Proof Explorer


Theorem rnrhmsubrg

Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023)

Ref Expression
Assertion rnrhmsubrg F M RingHom N ran F SubRing N

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid Base N = Base N
3 1 2 rhmf F M RingHom N F : Base M Base N
4 3 ffnd F M RingHom N F Fn Base M
5 fnima F Fn Base M F Base M = ran F
6 4 5 syl F M RingHom N F Base M = ran F
7 rhmrcl1 F M RingHom N M Ring
8 1 subrgid M Ring Base M SubRing M
9 7 8 syl F M RingHom N Base M SubRing M
10 rhmima F M RingHom N Base M SubRing M F Base M SubRing N
11 9 10 mpdan F M RingHom N F Base M SubRing N
12 6 11 eqeltrrd F M RingHom N ran F SubRing N