Database
BASIC ALGEBRAIC STRUCTURES
Division rings and fields
Subrings of a ring
rnrhmsubrg
Next ⟩
cntzsubr
Metamath Proof Explorer
Ascii
Unicode
Theorem
rnrhmsubrg
Description:
The range of a ring homomorphism is a subring.
(Contributed by
SN
, 18-Nov-2023)
Ref
Expression
Assertion
rnrhmsubrg
⊢
F
∈
M
RingHom
N
→
ran
⁡
F
∈
SubRing
⁡
N
Proof
Step
Hyp
Ref
Expression
1
df-ima
⊢
F
Base
M
=
ran
⁡
F
↾
Base
M
2
eqid
⊢
Base
M
=
Base
M
3
eqid
⊢
Base
N
=
Base
N
4
2
3
rhmf
⊢
F
∈
M
RingHom
N
→
F
:
Base
M
⟶
Base
N
5
4
ffnd
⊢
F
∈
M
RingHom
N
→
F
Fn
Base
M
6
fnresdm
⊢
F
Fn
Base
M
→
F
↾
Base
M
=
F
7
5
6
syl
⊢
F
∈
M
RingHom
N
→
F
↾
Base
M
=
F
8
7
rneqd
⊢
F
∈
M
RingHom
N
→
ran
⁡
F
↾
Base
M
=
ran
⁡
F
9
1
8
eqtr2id
⊢
F
∈
M
RingHom
N
→
ran
⁡
F
=
F
Base
M
10
rhmrcl1
⊢
F
∈
M
RingHom
N
→
M
∈
Ring
11
2
subrgid
⊢
M
∈
Ring
→
Base
M
∈
SubRing
⁡
M
12
10
11
syl
⊢
F
∈
M
RingHom
N
→
Base
M
∈
SubRing
⁡
M
13
rhmima
⊢
F
∈
M
RingHom
N
∧
Base
M
∈
SubRing
⁡
M
→
F
Base
M
∈
SubRing
⁡
N
14
12
13
mpdan
⊢
F
∈
M
RingHom
N
→
F
Base
M
∈
SubRing
⁡
N
15
9
14
eqeltrd
⊢
F
∈
M
RingHom
N
→
ran
⁡
F
∈
SubRing
⁡
N