Metamath Proof Explorer


Theorem rnsnf

Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rnsnf.1 φ A V
rnsnf.2 φ F : A B
Assertion rnsnf φ ran F = F A

Proof

Step Hyp Ref Expression
1 rnsnf.1 φ A V
2 rnsnf.2 φ F : A B
3 elsni x A x = A
4 3 fveq2d x A F x = F A
5 4 mpteq2ia x A F x = x A F A
6 2 feqmptd φ F = x A F x
7 fvexd φ F A V
8 fmptsn A V F A V A F A = x A F A
9 1 7 8 syl2anc φ A F A = x A F A
10 5 6 9 3eqtr4a φ F = A F A
11 10 rneqd φ ran F = ran A F A
12 rnsnopg A V ran A F A = F A
13 1 12 syl φ ran A F A = F A
14 11 13 eqtrd φ ran F = F A