Metamath Proof Explorer


Theorem rnsnf

Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rnsnf.1 φAV
rnsnf.2 φF:AB
Assertion rnsnf φranF=FA

Proof

Step Hyp Ref Expression
1 rnsnf.1 φAV
2 rnsnf.2 φF:AB
3 elsni xAx=A
4 3 fveq2d xAFx=FA
5 4 mpteq2ia xAFx=xAFA
6 2 feqmptd φF=xAFx
7 fvexd φFAV
8 fmptsn AVFAVAFA=xAFA
9 1 7 8 syl2anc φAFA=xAFA
10 5 6 9 3eqtr4a φF=AFA
11 10 rneqd φranF=ranAFA
12 rnsnopg AVranAFA=FA
13 1 12 syl φranAFA=FA
14 11 13 eqtrd φranF=FA