Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
rnss
Next ⟩
rnssi
Metamath Proof Explorer
Ascii
Unicode
Theorem
rnss
Description:
Subset theorem for range.
(Contributed by
NM
, 22-Mar-1998)
Ref
Expression
Assertion
rnss
⊢
A
⊆
B
→
ran
⁡
A
⊆
ran
⁡
B
Proof
Step
Hyp
Ref
Expression
1
cnvss
⊢
A
⊆
B
→
A
-1
⊆
B
-1
2
dmss
⊢
A
-1
⊆
B
-1
→
dom
⁡
A
-1
⊆
dom
⁡
B
-1
3
1
2
syl
⊢
A
⊆
B
→
dom
⁡
A
-1
⊆
dom
⁡
B
-1
4
df-rn
⊢
ran
⁡
A
=
dom
⁡
A
-1
5
df-rn
⊢
ran
⁡
B
=
dom
⁡
B
-1
6
3
4
5
3sstr4g
⊢
A
⊆
B
→
ran
⁡
A
⊆
ran
⁡
B