| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ttrcl |  | 
						
							| 2 | 1 | rneqi |  | 
						
							| 3 |  | rnopab |  | 
						
							| 4 | 2 3 | eqtri |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 |  | suceq |  | 
						
							| 7 | 6 | fveq2d |  | 
						
							| 8 | 5 7 | breq12d |  | 
						
							| 9 |  | simpr3 |  | 
						
							| 10 |  | df-1o |  | 
						
							| 11 | 10 | difeq2i |  | 
						
							| 12 | 11 | eleq2i |  | 
						
							| 13 |  | peano1 |  | 
						
							| 14 |  | eldifsucnn |  | 
						
							| 15 | 13 14 | ax-mp |  | 
						
							| 16 |  | dif0 |  | 
						
							| 17 | 16 | rexeqi |  | 
						
							| 18 | 12 15 17 | 3bitri |  | 
						
							| 19 |  | nnord |  | 
						
							| 20 |  | ordunisuc |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 |  | vex |  | 
						
							| 23 | 22 | sucid |  | 
						
							| 24 | 21 23 | eqeltrdi |  | 
						
							| 25 |  | unieq |  | 
						
							| 26 |  | id |  | 
						
							| 27 | 25 26 | eleq12d |  | 
						
							| 28 | 24 27 | syl5ibrcom |  | 
						
							| 29 | 28 | rexlimiv |  | 
						
							| 30 | 18 29 | sylbi |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 8 9 31 | rspcdva |  | 
						
							| 33 |  | suceq |  | 
						
							| 34 | 21 33 | syl |  | 
						
							| 35 |  | suceq |  | 
						
							| 36 | 25 35 | syl |  | 
						
							| 37 | 36 26 | eqeq12d |  | 
						
							| 38 | 34 37 | syl5ibrcom |  | 
						
							| 39 | 38 | rexlimiv |  | 
						
							| 40 | 18 39 | sylbi |  | 
						
							| 41 | 40 | fveq2d |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 |  | simpr2r |  | 
						
							| 44 | 42 43 | eqtrd |  | 
						
							| 45 | 32 44 | breqtrd |  | 
						
							| 46 |  | fvex |  | 
						
							| 47 |  | vex |  | 
						
							| 48 | 46 47 | brelrn |  | 
						
							| 49 | 45 48 | syl |  | 
						
							| 50 | 49 | ex |  | 
						
							| 51 | 50 | exlimdv |  | 
						
							| 52 | 51 | rexlimiv |  | 
						
							| 53 | 52 | exlimiv |  | 
						
							| 54 | 53 | abssi |  | 
						
							| 55 | 4 54 | eqsstri |  | 
						
							| 56 |  | rnresv |  | 
						
							| 57 |  | relres |  | 
						
							| 58 |  | ssttrcl |  | 
						
							| 59 | 57 58 | ax-mp |  | 
						
							| 60 |  | ttrclresv |  | 
						
							| 61 | 59 60 | sseqtri |  | 
						
							| 62 | 61 | rnssi |  | 
						
							| 63 | 56 62 | eqsstrri |  | 
						
							| 64 | 55 63 | eqssi |  |